Методы регистрации элементарных частиц. Методы регистрации заряженных частиц Экспериментальные методы регистрации частиц таблица

Элементарные частицы удается наблюдать благодаря тем следам, которые они оставляют при прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут себя обнаружить в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся приборы, которые регистрируют факт пролета частицы и, кроме того, позволяют в отдельных случаях судить об ее энергии. Вторую группу образуют так называемые трековые приборы, т. е. приборы, позволяющие наблюдать следы (треки) частиц в веществе.

К числу регистрирующих приборов относятся сцинтилляционный счетчик, черенковский счетчик, ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик.

1. Сцинтилляционный счетчик . Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы вызывают заметную световую вспышку (сцинтилляцию), называются фосфорами . Наиболее употребительными фосфорами являются (сернистый цинк, активированный серебром) и (йодистый натрий, активированный таллием).

Сцинтилляционный счетчик состоит из фосфора, от которого свет по специальному световоду подается к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов, пропорциональная интенсивности вспышки. Это дает дополнительную информацию о регистрируемых частицах. Для этого типа счетчиков эффективность регистрации для заряженных частиц 100 %.

2. Черенковский счетчик . Принцип действия этого счетчика рассмотрен в п. 3.3.3. (с. 84). Назначение счетчиков – это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде. Кроме этого, счетчики позволяют разделять частицы по массе. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе равносильно определению ее энергии. Если же масса частицы неизвестна, то она может быть определена по независимому измерению энергии частицы.

Черенковские счетчики устанавливаются на космических кораблях для исследования космического излучения.

3. Ионизационная камера представляет собой электрический конденсатор, заполненный газом, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение на обкладках конденсатора подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой – не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, на обкладках собираются ионы, возникшие непосредственно под действием заряженных частиц: измеряется суммарный ионизационный ток либо регистрируется прохождение одиночных частиц. В последнем случае камера работает как счетчик.

4. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра с тонкой проволокой, натянутой по его оси. Цилиндр служит катодом, проволока – анодом. В отличие от ионизационной камеры в газоразрядном счетчике основную роль играет вторичная ионизация. Различают два типа газоразрядных счетчиков: пропорциональные счетчики и счетчики Гейгера–Мюллера. В первых – газовый разряд несамостоятельный, во вторых – самостоятельный.

В пропорциональных счетчиках выходной импульс пропорционален первичной ионизации, т. е. энергии частицы, влетевшей в счетчик. Поэтому эти счетчики не только регистрируют частицу, но и измеряют ее энергию.

Счетчик Гейгера–Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но он работает в области вольтамперной характеристики, соответствующей самостоятельному разряду, т. е. в области высоких напряжений, когда выходной импульс не зависит от первичной ионизации. Этот счетчик регистрирует частицу без измерения ее энергии. Для регистрации отдельных импульсов возникший самостоятельный разряд нужно гасить. Для этого последовательно с нитью (анодом) включается такое сопротивление, чтобы возникший в счетчике ток разряда вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда.

5. Полупроводниковый счетчик . Основным элементом этого счетчика является полупроводниковый диод, который имеет очень малую толщину рабочей области (десятые доли миллиметра). Вследствие этого счетчик не может регистрировать высокоэнергетические частицы. Но он обладает высокой надежностью и может работать в магнитных полях, поскольку для полупроводников магниторезистивный эффект (зависимость сопротивления от напряженности магнитного поля) очень мал.

К числу трековых приборов относятся камера Вильсона, диффузионная камера, пузырьковая камера и ядерные фотоэмульсии.

1. Камера Вильсона . Так называют прибор, созданный английским физиком Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Выполняется камера обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом, насыщенным парами воды или спирта. При резком расширении газа пар становится пересыщенным, и на траекториях частиц, пролетевших через камеру, образуются треки из тумана, которые фотографируются под разными углами. По внешнему виду треков можно судить о типе пролетевших частиц, об их количестве и их энергии. Поместив камеру в магнитное поле, можно по искривлению траекторий частиц судить о знаке их заряда.

Камера Вильсона долгое время была единственным прибором трекового типа. Однако и она не лишена недостатков, главный из которых – малое рабочее время, которое составляет примерно 1 % от времени, затрачиваемого на подготовку камеры к очередному запуску.

2. Диффузионная камера является разновидностью камеры Вильсона. Пересыщение достигается диффузией паров спирта от нагреваемой крышки к охлаждаемому дну. Возле дна возникает слой пересыщенного пара, в котором пролетающие заряженные частицы создают треки. В отличие от камеры Вильсона диффузионная камера работает непрерывно.

3. Пузырьковая камера. Этот прибор тоже является модификацией камеры Вильсона. Рабочим веществом является перегретая жидкость под высоким давлением. Резким сбросом давления жидкость переводится в неустойчивое перегретое состояние. Пролетающая частица вызывает резкое вскипание жидкости, и траектория оказывается обозначенной цепочкой пузырьков пара. Трек, как и в камере Вильсона, фотографируется.

Пузырьковая камера работает циклами. Ее размеры такие же, как и размеры камеры Вильсона. Жидкость много плотнее пара, что позволяет использовать камеру для исследования длинных цепей рождений и распадов высокоэнергетических частиц.

4. Ядерные фотоэмульсии . При использовании этого метода регистрации заряженная частица проходит в эмульсии, вызывая ионизацию атомов. После проявления эмульсии следы заряженных частиц обнаруживаются в виде цепочки зерен серебра. Эмульсия – среда более плотная, чем пар в камере Вильсона или жидкость в пузырьковой камере, поэтому протяженность трека в эмульсии более короткая. (Трек длиной в эмульсии соответствует треку длиной в камере Вильсона.) Метод фотоэмульсий применяется для изучения частиц сверхвысоких энергий, которые находятся в космических лучах либо получаются в ускорителях.

Преимущества счетчиков и трековых детекторов объединены в искровых камерах, в которых быстрота регистрации, свойственная счетчикам, сочетается с более полной информацией о частицах, получаемой в камерах. Можно сказать, что искровая камера – это набор счетчиков. Информация в искровых камерах выдается немедленно, без последующей обработки. В то же время по действию многих счетчиков можно установить треки частиц.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала.

Вид урока: комбинированный.

Технология: проблемно-диалогическая.

Цель урока: организовать деятельность учащихся по изучению и первичному закреплению знаний о методах регистрации заряженных частиц.

Оборудование: компьютер и мультимедиа-проектор, Презентация .

Способы регистрации заряженных частиц

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности , открыты нейтрон и протон, предсказано существование нейтрино и т.д. Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света.

Со временем экспериментальные установки становились все сложней. Развивалась техника ускорения и детектирования частиц, ядерная электроника. Успехи в физике ядра и элементарных частиц все в большей степени определяются прогрессом в этих областях. Нобелевские премии по физике часто присуждаются за работы в области техники физического эксперимента.

Детекторы служат как для регистрации самого факта наличия частицы так и для определения её энергии и импульса, траектории движения частицы и др. характеристик. Для регистрации частиц часто используют детекторы которые максимально чувствительны к регистрации определенной частицы и не чувствуют большой фон создаваемый другими частицами.

Обычно в экспериментах по физике ядра и частиц необходимо выделять «нужные» события на гигантском фоне «ненужных» событий, может быть одно из миллиарда. Для этого используют различные комбинации счётчиков и методов регистрации.

Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы.

1. Счётчик Гейгера

Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока - анод. Система заполнена газовой смесью. При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду - нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

2. Камера Вильсона

Камера Вильсона – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена Ч. Вильсоном в 1912 г. (Нобелевская премия 1927 г.).

Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа. В камере Вильсона треки заряженных частиц становятся видимыми благодаря конденсации перенасыщенного пара на ионах газа, образованных заряженной частицей. На ионах образуются капли жидкости, которые вырастают до размеров достаточных для наблюдения (10 –3 -10 –4 см) и фотографирования при хорошем освещении. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта – на положительных). Перенасыщение достигается быстрым уменьшением давления за счёт расширения рабочего объёма. Возможности камеры Вильсона значительно возрастают при помещении её в магнитное поле. По искривлённой магнитным полем траектории заряженной частицы определяют знак её заряда и импульс. С помощью камеры Вильсона в 1932 г. К. Андерсон обнаружил в космических лучах позитрон.

3. Пузырьковая камера

Пузырьковая камера – трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка пузырьков пара вдоль траектории её движения. Изобретена А. Глэзером в 1952 г. (Нобелевская премия 1960 г.).

Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.

Камера Вильсона и пузырьковая камера имеют огромное преимущество, которое заключается в том, что можно непосредственно наблюдать все заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и поэтому пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.

4. Ядерные эмульсии

Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.
Фотоэмульсии как детекторы частиц в какой-то мере аналогичны камере Вильсона и пузырьковой камере. Впервые их применил английский физик С.Пауэлл для изучения космических лучей. Фотоэмульсия представляет собой слой желатины с диспергированными в ней зернами бромида серебра. Под действием света в зернах бромида серебра образуются центры скрытого изображения, способствующие восстановлению бромида серебра до металлического серебра при проявлении обычным фотографическим проявителем. Физический механизм образования этих центров состоит в образовании атомов металлического серебра за счет фотоэффекта. Ионизация, производимая заряженными частицами, дает такой же результат: возникает след из сенсибилизированных зерен, который после проявления можно видеть под микроскопом.

5. Сцинтиляционный детектор

Сцинтиляционный детектор использует свойство некоторых веществ светиться (сцинтилировать) при прохождении заряженной частицы. Кванты света, образующиеся в сцинтиляторе, затем регистрируются с помощью фотоумножителей.

Современные измерительные установки в физике высоких энергий представляют из себя сложные системы, включающие десятки тысяч счетчиков, сложную электронику и способны одновременно регистрировать десятки частиц, рождающихся в одном столкновении.

В данной статье мы поможем подготовиться к уроку по физике (9 класс). исследования частиц - это не обычная тема, а очень интересная и захватывающая экскурсия в мир молекулярной ядерной науки. Достичь такого уровня прогресса цивилизация смогла совсем недавно, и ученые до сих пор спорят, а нужны ли человечеству такие знания? Ведь если люди смогут повторить процесс атомного взрыва, который привел к появлению Вселенной, то может, разрушится не только наша планета, но и весь Космос.

О каких частицах идет речь и зачем их исследовать

Частично ответы на эти вопросы дает курс физики. Экспериментальные методы исследования частиц - это способ увидеть то, что недоступно человеку даже при использовании самых мощных микроскопов. Но обо всем по-порядку.

Элементарная частица - это совокупный термин, под которым подразумеваются такие частицы, которые уже нельзя расщепить на меньшие кусочки. Всего физиками открыто более 350 элементарных частиц. Мы больше всего привыкли слышать о протонах, нейронах, электронах, фотонах, кварках. Это так называемые фундаментальные частицы.

Характеристика элементарных частиц

Все наименьшие частицы имеют одно и тоже свойство: они могут взаимопревращаться под влиянием собственного воздействия. Одни имеют сильные электромагнитные свойства, другие слабые гравитационные. Но все элементарные частицы характеризуются по следующим параметрам:

  • Масса.
  • Спин - собственный момент импульса.
  • Электрический заряд.
  • Время жизни.
  • Четность.
  • Магнитный момент.
  • Барионный заряд.
  • Лептонный заряд.

Краткий экскурс в теорию строения вещества

Любое вещество состоит из атомов, которые в свою очередь имеют ядро и электроны. Электроны, подобно планетам в Солнечной системе, двигаются вокруг ядра каждый по своей оси. Расстояние между ними очень большое, в атомных масштабах. Ядро состоит из протонов и нейронов, связь между ними настолько крепкая, что их невозможно разъединить ни одним известным науке способом. В этом и состоит суть экспериментальных методов исследования частиц (кратко).

Нам тяжело это представить, но ядерная связь превосходит все известные на земле силы в миллионы раз. Мы знаем химический, ядерный взрыв. Но то, что сдерживает протоны и нейроны в совокупности - это нечто иное. Возможно, это ключ к разгадке тайны возникновения мироздания. Именно поэтому так важно изучать экспериментальные методы изучения частиц.

Многочисленные опыты натолкнули ученых на мысль, что нейроны состоят из еще меньших единиц и назвали их кварками. Что находится внутри них, пока не известно. Но кварки - это неразделяемые единицы. То есть, выделить одну не получается никаким способом. Если ученые используют экспериментальный метод исследования частиц с целью выделить один кварк, то сколько бы попыток они не предпринимали, всегда выделяется минимум два кварка. Это еще раз подтверждает нерушимую силу ядерного потенциала.

Какие существуют методы исследования частиц

Перейдем непосредственно к экспериментальным методам исследования частиц (таблица 1).

Название метода

Принцип действия

Свечение (люминесценция)

Радиоактивный препарат испускает волны, благодаря которым происходит столкновение частиц и могут наблюдаться отдельные свечения.

Ионизация молекул газа быстрыми заряженными частицами

Опускает с большой скоростью поршень, что приводит к сильному охлаждению пара, который становится перенасыщенным. Капельки конденсата указывают на траектории движения цепочки ионов.

Пузырьковая камера

Ионизация жидкости

Объем рабочего пространства наполнен горячим жидким водородом или пропаном, на которые воздействуют под давлением. Доводят состояние до перегретого и резко уменьшают давление. Заряженные частицы, воздействуя еще большей энергией, заставляют водород или пропан закипеть. На той траектории, по которой двигалась частица образовываются капельки пара.

Метод сцинтилляций (Спинтарископ)

Свечение (люминесценция)

Когда молекулы газа ионизируются, возникает большое количество электронно-ионных пар. Чем больше напряженность, тем больше возникает свободных пар, пока не достигнет пика и не останется ни одного свободного иона. В этот момент счетчик регистрирует частицу.

Это один из первых экспериментальных методов исследования заряженных частиц, и был изобретен на пять лет позже счетчика Гейгера - в 1912 году.

Строение простое: стеклянный цилиндр, внутри - поршень. Внизу постелена черная ткань, пропитанная водой и спиртом, благодаря чему воздух в камере насыщен их парами.

Поршень начинают опускать и поднимать, создавая давление, в результате чего газ остывает. Должен образоваться конденсат, но его нет, поскольку в камере отсутствует центр конденсации (ион или пылинка). После этого колбу приподнимают для попадания частички - иона или пыли. Частица начинает движение и по ее траектории образовывается конденсат, который можно увидеть. Путь, который проходит частица, называется трек.

Недостатком такого метода является слишком маленький пробег частиц. Это привело к появлению более прогрессивной теории, основанной на устройстве с более плотной средой.

Пузырьковая камера

Аналогичный принцип действия камеры Вильсона имеет следующий экспериментальный метод исследования частиц - Только вместо насыщенного газа, в стеклянной колбе находится жидкость.

Основа теории такова, что под высоким давлением жидкость не может начать кипеть выше точки закипания. Но как только появляется заряженная частица, по треку ее движения жидкость начинает закипать, переходя в парообразное состояние. Капельки этого процесса фиксируются камерой.

Метод толстослойных фотоэмульсий

Вернемся к таблице по физике "Экспериментальные методы исследования частиц". В ней, на ряду с камерой Вильсона и пузырьковым методом, рассматривался способ регистрации частиц с помощью толстослойной фотоэмульсии. Впервые эксперимент был поставлен советскими физиками Л.В. Мысовским и А.П. Ждановым в 1928 году.

Идея очень проста. Для опытов используют пластину, покрытую толстым слоем фотоэмульсий. Эта фотоэмульсия состоит из кристалликов бромида серебра. Когда заряженная частица пронизывает кристаллик, она отделяет от атома электроны, которые образуют скрытую цепочку. Ее можно увидеть, проявив пленку. Полученное изображение позволяет рассчитать энергию и массу частицы.

На самом деле, трек получается очень коротким и микроскопически маленьким. Но метод хорош тем, что проявленный снимок можно увеличивать бесконечное число раз, тем самым лучше изучая его.

Метод сцинтилляций

Впервые его провел Резерфорд в 1911 году, хотя идея возникла немного раньше и у другого ученого - У. Крупе. Несмотря на то, что разница составляла 8 лет, за это время пришлось усовершенствовать прибор.

Основной принцип состоит в том, что на экране, покрытом люминесцирующим веществом, будут отображаться вспышки света при прохождении заряженной частицы. Атомы вещества возбуждаются при воздействии на них частицы с мощной энергией. В момент столкновения происходит вспышка, которую наблюдают в микроскоп.

Этот метод очень непопулярен среди физиков. У него есть несколько недостатков. Первое, точность полученных результатов очень сильно зависит от остроты зрения человека. Если моргнуть - можно пропустить очень важный момент.

Второе - при длительном наблюдении очень быстро устают глаза, и поэтому, изучение атомов становится невозможным.

Выводы

Существует несколько экспериментальных методов исследования заряженных частиц. Поскольку атомы веществ настолько маленькие, что их тяжело увидеть даже в самый мощный микроскоп, ученым приходится ставить различные опыты, чтобы понять, что находится в середине центра. На данном этапе развития цивилизации проделан огромный путь и изучены самые недоступные взору элементы. Возможно, именно в них кроются тайны Вселенной.

Сегодня мы поговорим об экспериментальных методах исследования частиц. На уроке мы обсудим, как с помощью альфа-частиц, образующихся в результате распада радиоактивного элемента радия, можно изучить внутреннее строение атомов. Также поговорим об экспериментальных методах исследования частиц, входящих в состав атома.

Тема: Строение атома и атомного ядра. Использование энергии атомных ядер

Урок 54. Экспериментальные методы исследования частиц

Ерюткин Евгений Сергеевич

Данный урок будет посвящен обсуждению экспериментальных методов регистрации частиц. Ранее мы говорили о том, что в начале ХХ века появился инструмент, с помощью которого можно изучать строение атома и строение ядра. Это a-частицы, которые образуются в результате радиоактивного распада.

Чтобы регистрировать те частицы и излучения, которые образуются в результате ядерных реакций, нужны какие-то новые методы, отличные от использующихся в макромире. Кстати, в опытах Резерфорда уже использовался один такой метод. Он называется методом сцинтилляций (вспышек). В 1903 г. было обнаружено, что если a-частица попадает на сернистый цинк, то в том месте, куда она попала, возникает небольшая вспышка. Это явление и было положено в основу сцинтилляционного метода.

Этот метод был все же несовершенен. Приходилось очень тщательно наблюдать за экраном, чтобы увидеть все вспышки, глаз уставал: ведь приходилось пользоваться микроскопом. Возникла необходимость в новых способах, которые давали бы возможность более четко, быстро и достоверно регистрировать те или иные излучения.

Такой способ впервые бы предложен сотрудником лаборатории, которой руководил Резерфорд, - Гейгером. Он создал прибор, способный «считать» заряженные частицы, попадающие в него, т.н. счетчик Гейгера. После того как немецкий ученый Мюллер усовершенствовал этот самый счетчик, он стал называться счетчиком Гейгера - Мюллера.

Как же он устроен? Счетчик этот газоразрядный, т.е. работает по такому принципу: внутри этого самого счетчика, в главной его части, образуется газовый разряд при пролете частицы. Напомню, что разряд - это протекание электрического тока в газе.

Рис. 1. Принципиальная схема счетчика Гейгера-Мюллера

Стеклянный баллон, внутри которого расположены анод и катод. Катод представлен в виде цилиндра, а внутри этого цилиндра протянут анод. Между катодом и анодом за счет источника тока создается достаточно высокое напряжение. Между электродами, внутри вакуумного баллона находится, как правило, инертный газ. Делается это специально, чтобы создать в дальнейшем тот самый электрический разряд. Кроме этого, в схеме присутствует высокое (R~10 9 Ом) сопротивление. Нужно оно, чтобы погасить ток, протекающий в этой цепи. А работа счетчика происходит следующим образом. Как мы знаем, частицы, которые образуются в результате ядерных реакций, обладают достаточно большой проникающей способностью. Поэтому стеклянный баллон, внутри которого находятся указанные элементы, не представляет для них какой-либо преграды. В результате частица проникает внутрь этого газоразрядного счетчика, ионизирует газ, который находится внутри. В результате такой ионизации образуются энергичные ионы, которые в свою очередь сталкиваются и создают, сталкиваясь между собой, лавину заряженных частиц. Эта лавина заряженных частиц будет состоять из ионов отрицательных, положительно заряженных, а также из электронов. И когда проходит эта лавина, мы можем зафиксировать электрический ток. Это и даст нам возможность понять, что через газоразрядный счетчик прошла частица.

Удобен тем, что в одну секунду такой счетчик может регистрировать приблизительно 10000 частиц. После некоторого усовершенствования этот счетчик стал регистрировать еще и g-лучи.

Конечно, счетчик Гейгера - удобная вещь, которая дает возможность определить существование вообще радиоактивности. Однако определить параметры частицы, провести с этими частицами какие-либо исследования, счетчик Гейгера - Мюллера не позволяет. Для этого нужны совсем другие способы, совсем другие методы. Вскоре после создания счетчика Гейгера, появились такие методы, такие устройства. Одно из самых известных и распространенных - камера Вильсона.

Рис. 2. Камера Вильсона

Обратите внимание на устройство камеры. Цилиндр, внутри которого располагается поршень, который может ходить вверх-вниз. Внутри на этом поршне находится темная ткань, смоченная спиртом и водой. Верхняя часть цилиндра закрыта прозрачным материалом, как правило, это достаточно плотное стекло. Над ним располагается фотоаппарат, чтобы производить фотографирование того, что будет происходить внутри камеры Вильсона. Чтобы все это было видно очень хорошо, с левой стороны производится подсветка. Через окошко, справа, направляется поток частиц. Эти частицы, попадая внутри в среду, которая состоит из воды и спирта, будут с частицами воды и частицами спирта взаимодействовать. Тут как раз и кроется самое интересное. Пространство между стеклом и поршнем заполнено парами воды и спирта, образующимися в результате испарения. Когда поршень резко опускается вниз, то давление понижается и пары, которые здесь находятся, приходят в очень неустойчивое состояние, т.е. готовы перейти в жидкость. Но поскольку в это пространство помещаются чистые спирт и вода, без примесей, то какое-то время (оно может быть и достаточно большим) такое неравновесное состояние сохраняется. В момент, когда в область такого перенасыщения попадают заряженные частицы, они и становятся теми центрами, на которых начинается конденсация пара. Причем, если попадают отрицательные частицы, они взаимодействуют с одними ионами, а если положительные - то с ионами другого вещества. Там, где эта частица пролетела, остается так называемый трек, проще говоря, след. Если камеру Вильсона теперь поместить в магнитное поле, то частицы, которые обладают зарядами, начинают в магнитном поле отклоняться. А дальше все очень просто: если частица положительно заряженная, то она отклоняется в одну сторону. Если отрицательная - в другую. Так мы можем определить знак заряд, а по радиусу того самого закругления, по которому частица движется, мы можем определить или оценить массу этой частицы. Теперь можно говорить о том, что мы можем получить полноценную информацию о частицах, из которых состоит то или иное излучение.

Рис. 3. Треки частиц в камере Вильсона

У камеры Вильсона есть один недостаток. Те самые треки, которые образуются в результате прохождения частиц, недолговечны. Каждый раз приходится снова готовить камеру, чтобы получить новую картину. Поэтому сверху над камерой и располагается фотоаппарат, который регистрирует те самые треки.

Естественно, - это не последнее устройство, которое используют для регистрации частиц. В 1952 г. было изобретено устройство, которое получило название пузырьковой камеры. Принцип работы у нее примерно такой же, как у камеры Вильсона; только работа проводится с перегретой жидкостью, т.е. в состоянии, когда жидкость вот-вот готова закипеть. В этот момент через такую жидкость пролетают частицы, которые и создают центры образования пузырьков. Треки, образованные в такой камере, сохраняются гораздо дольше, и этим камера удобнее.

Рис. 4. Внешний вид пузырьковой камеры

В России был создан еще один метод наблюдения за радиоактивными различными частицами, распадами, реакциями. Это метод толстослойных фотоэмульсий. Частицы попадают в эмульсии, приготовленные определенным образом. Взаимодействуя с частицами эмульсий, они не просто создают треки, но треки, которые уже сами по себе представляют фотографию, которую мы получаем, когда фотографируем треки в камере Вильсона или в пузырьковой камере. Это гораздо удобнее. Но и здесь есть один важный недостаток. Чтобы фотоэмульсионный метод работал довольно долгое время, должно происходить постоянное проникновение, попадание образовавшихся новых частиц или излучений, т.е. регистрировать кратковременные импульсы таким способом проблематично.

Можно говорить и о других методах: например, есть такой метод, как искровая камера. Там в результате протекания радиоактивных реакций по следу движения частицы образуются искры. Их тоже хорошо видно и легко регистрировать.

На сегодняшний день чаще всего используют полупроводниковые датчики, которые и компактны, и удобны, и дают достаточно хороший результат.

О том, какие же открытия удалось сделать при помощи описанных выше методов, мы поговорим на следующем уроке.

Список дополнительной литературы

  1. Боровой А.А. Как регистрируют частицы (по следам нейтрино). «Библиотечка “Квант”». Вып. 15. М.: Наука, 1981
  2. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980
  3. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: «Просвещение»
  4. Китайгородский А.И. Физика для всех. Фотоны и ядра. Книга 4. М.: Наука
  5. Мякишев Г.Я., Синякова А.З. Физика. Оптика Квантовая физика. 11 класс: учебник для углубленного изучения физики. М.: Дрофа

Приборы для регистрации заряженных частиц называются детекторами. Существует два основных вида детекторов:

1) дискретные (счетные и определяющие энергию частиц): счетчик Гейгера, ионизационная камера и др.;

2) трековые (дающие возможность наблюдать и фотографировать следы (треки) частиц в рабочем объеме детектора): камера Вильсона, пузырьковая камера, толстослойные фотоэмульсии и др.

1. Газоразрядный счетчик Гейгера. Для регистрации электронов и \(~\gamma\)-квантов (фотонов) большой энергии используется счетчик Гейгера-Мюллера. Он состоит из стеклянной трубки (рис. 22.4), к внутренним стенкам которой прилегает катод К - тонкий металлический цилиндр; анодом А служит тонкая металлическая проволока, натянутая по оси счетчика. Трубка заполняется газом, обычно аргоном. Счетчик включается в регистрирующую схему. На корпус подается отрицательный потенциал, на нить - положительный. Последовательно счетчику включается резистор R, с которого сигнал подается к регистрирующему устройству.

Действие счетчика основано на ударной ионизации. Пусть в счетчик попала частица, создавшая на своем пути хотя бы одну пару: "ион + электрон". Электроны, двигаясь к аноду (нити), попадают в поле с нарастающей напряженностью (напряжение между А и K ~ 1600 В), их скорость стремительно возрастает, и на своем пути они создают ионную лавину (возникает ударная ионизация). Попав на нить, электроны снижают ее потенциал, вследствие чего по резистору R пойдет ток. На его концах возникает импульс напряжения, который и поступает в регистрационное устройство.

На резисторе происходит падение напряжения, потенциал анода уменьшается, и напряженность поля внутри счетчика убывает, вследствие чего уменьшается кинетическая энергия электронов. Разряд прекращается. Таким образом, резистор играет роль сопротивления, автоматически гасящего лавинный разряд. Положительные ионы стекают к катоду в течение \(~t \approx 10^{-4}\) с после начала разряда.

Счетчик Гейгера позволяет регистрировать 10 4 частиц в секунду. Он применяется в основном для регистрации электронов и \(~\gamma\)-квантов. Однако непосредственно \(~\gamma\)-кванты вследствие своей малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого \(~\gamma\)-кванты выбивают электроны. При регистрации электронов эффективность счетчика 100 %, а при регистрации \(~\gamma\)-квантов - лишь около 1 %.

Регистрация тяжелых \(~\alpha\)-частиц затруднена, так как сложно сделать в счетчике достаточно тонкое "окошко", прозрачное для этих частиц.

2. Камера Вильсона.

В камере используется способность частиц больших энергий ионизировать атомы газа. Камера Вильсона (рис. 22.5) представляет собой цилиндрический сосуд с поршнем 1. Верхняя часть цилиндра сделана из прозрачного материала, в камеру вводится небольшое количество воды или спирта, для чего снизу сосуд покрыт слоем влажного бархата или сукна 2. Внутри камеры образуется смесь насыщенных паров и воздуха. При быстром опускании поршня 1 смесь адиабатически расширяется, что сопровождается понижением ее температуры. За счет охлаждения пар становится пересыщенным.

Если воздух очищен от пылинок, то конденсация пара в жидкость затруднена из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому если через камеру (впускают через окошко 3) пролетает заряженная частица, ионизирующая на своем пути молекулы, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры благодаря осевшим маленьким капелькам жидкости становится видимой. Цепочка образовавшихся капель жидкости образует трек частицы. Тепловое движение молекул быстро размывает трек частиц, и траектории частиц видны отчетливо лишь около 0,1 с, что, однако, достаточно для фотографирования.

Вид трека на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, \(~\alpha\)-частицы оставляют сравнительно толстый сплошной след, протоны - более тонкий, а электроны - пунктирный (рис. 22.6). Появляющееся расщепление трека - "вилки" свидетельствует о происходящей реакции.

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Советские физики П. Л. Капица и Д. В. Скобельцын предложили размещать камеру в магнитном поле, под действием которого траектории частиц искривляются в ту или иную сторону в зависимости от знака заряда. По радиусу кривизны траектории и интенсивности треков определяют энергию и массу частицы (удельный заряд).

3. Пузырьковая камера. В настоящее время в научных исследованиях используется пузырьковая камера. Рабочий объем в пузырьковой камере заполнен жидкостью под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени находится в неустойчивом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ионы служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т.е. делается видимой. В качестве жидкостей используются главным образом жидкий водород и пропан С 3 Н 3 . Длительность рабочего цикла порядка 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества, вследствие чего частица теряет больше энергии, чем в газе. Пробеги частиц оказываются более короткими, и частицы даже больших энергий застревают в камере. Это позволяет гораздо точнее определить направление движения частицы и ее энергию, наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

4. Метод толстослойных фотоэмульсий разработан Л. В. Мысовским и А. П. Ждановым.

Он основан на использовании почернения фотографического слоя под действием проходящих через фотоэмульсию быстрых заряженных частиц. Такая частица вызывает распад молекул бромистого серебра на ионы Ag + и Вг - и почернение фотоэмульсии вдоль траектории движения, образуя скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и образуется трек частицы. По длине и толщине трека судят об энергии и массе частицы.

Для изучения следов частиц, обладающих очень высокой энергией и дающих длинные следы, большое количество пластинок складывается в стопу.

Существенным преимуществом метода фотоэмульсий, помимо простоты применения, является то, что он дает неисчезающий след частицы, который затем может быть тщательно изучен. Это привело к широкому применению данного метода при исследовании новых элементарных частиц. Этим методом с добавлением к эмульсии соединений бора или лития могут быть изучены следы нейтронов, которые в результате реакций с ядрами бора и лития создают \(~\alpha\)-частицы, вызывающие почернение в слое ядерной эмульсии. По следам \(~\alpha\)-частиц делаются выводы о скорости и энергиях нейтронов, вызвавших появление \(~\alpha\)-частиц.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 618-621.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий