Общие химические свойства металлов. Общие физические и химические свойства металлов. Побочные подгруппы периодической системы

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С НЕМЕТАЛЛАМИ

Неметаллы проявляют окислительные свойства в реакциях с металлами, принимая от них электроны и восстанавливаясь.

Взаимодействие с галогенами

Галогены (F 2 , Cl 2 , Br 2 , I 2 ) являются сильными окислителями, поэтому с ними взаимодействуют все металлы при обычных условиях:

2 Me + n Hal 2 → 2 MeHal n

Продуктом такой реакции является соль – галогенид металла (MeF n -фторид, MeCl n -хлорид, MeBr n -бромид, MeI n -иодид). При взаимодействии с металлом галоген восстанавливается до низшей степени окисления (-1), а n равно степени окисления металла.

Скорость реакции зависит от химической активности металла и галогена. Окислительная активность галогенов снижается по группе сверху вниз (от F к I ).

Взаимодействие с кислородом

Кислородом окисляются почти все металлы (кроме Ag , Au , Pt ), при этом происходит образование оксидов Me 2 O n .

Активные металлы легко при обычных условиях взаимодействуют с кислородом воздуха.

2 Mg + O 2 → 2 MgO (со вспышкой)

Металлы средней активности также реагируют с кислородом при обычной температуре. Но скорость такой реакции существенно ниже, чем при участии активных металлов.

Малоактивные металлы окисляются кислородом при нагревании (горение в кислороде).

Оксиды металлов по химическим свойствам можно разделить на три группы:

1. Осно́вные оксиды (Na 2 O , CaO , Fe II O , Mn II O , Cu I O и др.) образованы металлами в низких степенях окисления (+1, +2, как правило, ниже +4). Основные оксиды взаимодействуют с кислотными оксидами и кислотами с образованием солей:

CaO + CO 2 → CaCO 3

CuO + H 2 SO 4 → CuSO 4 + H 2 O

2. Кислотные оксиды (Cr VI O 3 , Fe VI O 3 , Mn VI O 3 , Mn 2 VII O 7 и др.) образованы металлами в высоких степенях окисления (как правило, выше +4). Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей:

FeO 3 + K 2 O → K 2 FeO 4

CrO 3 + 2KOH → K 2 CrO 4 + H 2 O

3. Амфотерные оксиды (BeO , Al 2 O 3 , ZnO , SnO , MnO 2 , Cr 2 O 3 , PbO , PbO 2 и др.) имеют двойственную природу и могут взаимодействовать как с кислотами, так и с основаниями:

Cr 2 O 3 + 3H 2 SO 4 → Cr 2 (SO 4) + 3H 2 O

Cr 2 O 3 + 6NaOH → 2Na 3

Взаимодействие с серой

С серой взаимодействуют все металлы (кроме Au ), образуя соли – сульфиды Me 2 S n . При этом сера восстанавливается до степени окисления «-2». Платина (Pt ) взаимодействует с серой только в мелкораздробленном состоянии. Щелочные металлы, а также Ca и Mg реагируют с серой при нагревании со взрывом. Zn , Al (в порошке) и Mg в реакции с серой дают вспышку. В направлении слева направо в ряду активности скорость взаимодействия металлов с серой убывает.

Взаимодействие с водородом

С водородом некоторые активные металлы образуют соединения – гидриды:

2 Na + H 2 → 2 NaH

В этих соединениях водород находится в редкой для него степени окисления «-1».

Е.А. Нуднoва, М.В. Андрюxова


Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

Химические свойства металлов: взаимодействие с кислородом, галогенами, серой и отношение к воде, кислот, солей.

Химические свойства металлов обусловлены способностью их атомов легко отдавать электроны с внешнего энергетического уровня, превращаясь в положительно заряженные ионы. Таким образом в химических реакциях металлы проявляют себя энергичными восстановителями. Это является их главной общей химической свойством.

Способность отдавать электроны у атомов отдельных металлических элементов различна. Чем легче металл отдает свои электроны, тем он активнее, и тем энергичнее реагирует с другими веществами. На основе исследований все металлы были расположены в ряд по уменьшению их активности. Этот ряд впервые предложил выдающийся ученый Н. Н. Бекетов. Такой ряд активности металлов называют еще вытеснительный рядом металлов или электрохимическим рядом напряжений металлов. Он имеет следующий вид:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2 , Cu, Hg, Ag, Рt, Au

С помощью этого ряда можно обнаружить какой металл является активным другого. В этом ряду присутствует водород, который не является металлом. Его видны свойства приняты для сравнения за своеобразный ноль.

Имея свойства восстановителей, металлы реагируют с различными окислителями, прежде всего с неметаллами. С кислородом металлы реагируют при нормальных условиях или при нагревании с образованием оксидов, например:

2Mg0 + O02 = 2Mg+2O-2

В этой реакции атомы магния окисляются, атомы кислорода восстанавливаются. Благородные металлы, находящиеся в конце ряда, с кислородом реагируют. Активно происходят реакции с галогенами, например, сгорания меди в хлоре:

Cu0 + Cl02 = Cu+2Cl-2

Реакции с серой, чаще всего происходят при нагревании, например:

Fe0 + S0 = Fe+2S-2

Активные металлы, находящиеся в ряду активности металлов в Mg, реагируют с водой с образованием щелочей и водорода:

2Na0 + 2H+2O → 2Na+OH + H02

Металлы средней активности от Al до H2 реагируют с водой в более жестких условиях и образуют при этом оксиды и водород:

Pb0 + H+2O Химические свойства металов: взаимодействие с кислородом Pb+2O + H02.

Способность металла реагировать с кислотами и солями в растворе зависит также от его положения в вытеснительный ряде металлов. Металлы, стоящие в вытеснительный ряде металлов левее водорода, обычно вытесняют (восстанавливают) водород из разбавленных кислот, а металлы, стоящие правее водорода, его не вытесняют. Так, цинк и магний реагируют с растворами кислот, выделяя водород и образуя соли, а медь не реагирует.

Mg0 + 2H+Cl → Mg+2Cl2 + H02

Zn0 + H+2SO4 → Zn+2SO4 + H02.

Атомы металлов в этих реакциях являются восстановителями, а ионы водорода — окислителями.

Металлы реагируют с солями в водных растворах. Активные металлы вытесняют менее активные металлы из состава солей. Определить это можно по ряду активности металлов. Продуктами реакции являются новая соль и новый металл. Так, если железную пластинку погрузить в раствор меди (II) сульфата, через некоторое время на ней выделится медь в виде красного налета:

Fe0 + Cu+2SO4 → Fe+2SO4 + Cu0 .

Но если в раствор меди (II) сульфата погрузить серебряную пластину, то никакой реакции не произойдет:

Ag + CuSO4 ≠ .

Для проведения таких реакции нельзя брать слишком активные металлы (от лития до натрия), которые способны реагировать с водой.

Следовательно, металлы способны реагировать с неметаллами, водой, кислотами и солями. Во всех этих случаях металлы окисляются и являются восстановителями. Для прогнозирования течения химических реакций с участием металлов следует использовать вытеснительный ряд металлов.

По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления. Из известных в настоящее время 109 элементов 86 являются металлами. Основной отличительной особенностью металлов является наличие в конденсированном состоянии свободных, не связных с определенным атомом электронов. Эти электроны способны перемещаться по всему объему тела. Наличие свободных электронов определяет всю совокупность свойств металлов. В твердом состоянии большинство металлов имеет кристаллическую высокосимметричную структуру одного из типов: кубическую объемноцентрированную, кубическую гранецентрированную или гексагональную плотноупакованную (рис. 1).

Рис. 1. Типичная структура кристалла металлов: а – кубическая объемноцентрированная; б–кубическая гранецентрированная; в – плотная гексагональная

Существует техническая классификация металлов. Обычно выделяют следующие группы: черные металлы (Fe); тяжелые цветные металлы (Cu, Pb, Zn, Ni, Sn, Co, Sb, Bi, Hg, Cd), легкие металлы с плотностью менее 5 г/см 3 (Al, Mg, Ca и т.д.), драгоценные металлы (Au, Ag и платиновые металлы ) и редкие металлы (Be, Sc, In, Ge и некоторые другие).

В химии металлы классифицируются по их месту в периодической системе элементов. Различают металлы главных и побочных подгрупп. Металлы главных подгрупп называют непереходными. Эти металлы характеризуются тем, что в их атомах происходит последовательное заполнение s– и p– электронных оболочек.

Типичными металлами являются s–элементы (щелочные Li, Na, K, Rb, Cs, Fr и щелочноземельные Be, Mg, Ca, Sr, Ba, Ra металлы). Данные металлы расположены в Iа и IIа подгруппах (т. е., в главных подгруппах I и II групп). Этим металлам отвечает конфигурация валентных электронных оболочек ns 1 или ns 2 (n – главное квантовое число). Для данных металлов характерно:

а) металлы имеют на внешнем уровне 1 – 2 электрона, поэтому проявляют постоянные степени окисления +1, +2;

б) оксиды этих элементов носят основной характер (исключение –бериллий, т.к. малый радиус иона придает ему амфотерные свойства);

в) гидриды имеют солеобразный характер и образуют ионные кристаллы;

г) возбуждение электронных подуровней возможно только у металлов IIА группы с последующей sp–гибридизацией орбиталей.

К p–металлам относятся элементы IIIа (Al, Ga, In, Tl), IVа (Ge, Sn, Pb), Vа (Sb, Bi) и VIа (Ро) групп с главными квантовыми числами 3, 4, 5, 6. Данным металлам отвечает конфигурация валентных электронных оболочек ns 2 p z (z может принимать значение от 1 до 4 и равно номеру группы минус 2). Для данных металлов характерно:

а) образование химических связей осуществляется s – и p–электронами в процессе их возбуждения и гибридизации (sp–и spd), однако сверху вниз по группам способность к гибридизации падает;


б) оксиды p– металлов амфотерные или кислотные (основные оксиды только у In и Tl);

в) гидриды p–металлов имеют полимерный характер (AlH 3) n или газообразный (SnH 4 ,PbH 4 и т. д.), что подтверждает сходство с неметаллами, открывающими эти группы.

В атомах металлов побочных подгрупп, называемых переходными металлами, происходит застраивание d– и f– оболочек, в соответствии с чем их делят на d–группу и две f–группы лантаноиды и актиноиды.

К переходным металлам относят 37 элементов d–группы и 28 металлов f–группы. К металлам d–группы относят элементы Ib (Cu, Ag, Au), IIb (Zn, Cd, Hg), IIIb (Sc, Y, La, Ac), IVb (Ti, Zr, Hf, Db), Vb (V, Nb, Ta, Jl), VIb (Cr, Mo, W, Rf), VIIb (Mn, Tc, Re, Bh) и VIII групп (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Rt, Hn, Mt, Db, Jl, Rf, Bh, Hn, Mt). Этим элементам отвечает конфигурация 3d z 4s 2 . Исключения составляют некоторые атомы, в том числе атомы хрома с полузаполненной 3d 5 –оболочкой (3d 5 4s 1) и меди – с полностью заполненной 3d 10 –оболочкой (3d 10 4s 1). Эти элементы обладают некоторыми общими свойствами:

1. все они образуют сплавы между собой и другими металлами;

2. наличие частично заполненных электронных оболочек обусловливает способность d–металлов образовывать парамагнитные соединения;

3. в химических реакциях они проявляют переменную валентность (за немногими исключениями), а их ионы и соединения, как правило, окрашены;

4. в химических соединениях d–элементы электроположительны. "Благородные" металлы, обладая высоким положительным значением стандартного электродного потенциала (Е>0), взаимодействуют с кислотами необычным образом;

5. ионы d–металлов имеют вакантные атомные орбитали валентного уровня (ns, np, (n–1) d), поэтому они проявляют акцепторные свойства, выступая в качестве центрального иона в координационных (комплексных) соединениях.

Химические свойства элементов определяются их положением в Периодической системе элементов Менделеева. Так, металлические свойства сверху вниз в группе возрастают, что обусловлено уменьшением силы взаимодействия между валентными электронами и ядром вследствие увеличения радиуса атома и за счет возрастания экранирования электронами, расположенными на внутренних атомных орбиталях. Это приводит к облегчению ионизации атома. В периоде металлические свойства уменьшаются слева направо, т.к. это связано с увеличением заряда ядра и тем самым с увеличением прочности связи валентных электронов с ядром.

В химическом отношении атомы всех металлов характеризуются сравнительной легкостью отдачи валентных электронов (т.е. малой величиной энергии ионизации) и низким значением сродства к электрону (т.е. малой способностью удерживать избыточные электроны). Как следствие этого низкое значение электроотрицательности, т.е., способность образовывать только положительно заряженные ионы и проявлять в своих соединениях только положительную степень окисления. В связи с этим металлы в свободном состоянии являются восстановителями.

Восстановительная способность разных металлов неодинакова. Для реакций в водных растворах она определяется значением стандартного электродного потенциала металла (т.е. положением металла в ряду напряжений) и концентрацией (активностью) его ионов в растворе.

Взаимодействие металлов с элементарными окислителями (F 2 , Cl 2 , O 2 , N 2 , S и т.д.). Например, реакция с кислородом, как правило, протекает следующим образом

2Me + 0,5nO 2 = Me 2 O n ,

где n – валентность металла.

Взаимодействие металлов с водой. Металлы, обладающие стандартным потенциалом менее –2,71 В, вытесняют водород из воды на холоде с образованием гидроксидов металлов и водорода. Металлы со стандартным потенциалом от –2,7 до –1,23 В вытесняют водород из воды при нагревании

Me + nH 2 О = Me(OH) n + 0,5n H 2 .

Остальные металлы с водой не реагируют.

Взаимодействие с щелочами. С щелочами могут реагировать металлы, дающие амфотерные оксиды, и металлы, обладающие высокими степенями окисления, в присутствии сильного окислителя. В первом случае металлы образуют анионы своих кислот. Так, реакция взаимодействия алюминия с щелочью запишется уравнением

2Al + 6H 2 O + 2NaOH = 2Na + 3H 2

в котором, лигандом является ион гидроксида. Во втором случае образуются соли, например K 2 CrO 4 .

Взаимодействие металлов с кислотами. С кислотами металлы реагируют различно в зависимости от численного значения стандартного электродного потенциала (Е) (т.е. от положения металла в ряду напряжения) и окислительных свойств кислоты:

· в растворах галогеноводородов и разбавленной серной кислоты окислителем является только ион Н + , и поэтому с этими кислотами взаимодействуют металлы, стандартный потенциал которых меньше стандартного потенциала водорода:

Me + 2n H + = Me n+ + n H 2 ;

· концентрированная серная кислота растворяет почти все металлы независимо от положения их в ряду стандартных электродных потенциалов (кроме Au и Pt). Водород при этом не выделяется, т.к. функцию окислителя в кислоте выполняет cульфат–ион (SO 4 2–). В зависимости от концентрации и условий проведения опыта cульфат–ион восстанавливается до различных продуктов. Так, цинк в зависимости от концентрации серной кислоты и температуры реагирует следующим образом:

Zn + H 2 SO 4(разб.) = ZnSO 4 + H 2

Zn + 2H 2 SO 4(конц.) = ZnSO 4 + SO 2 +H 2 O

– при нагревании 3Zn + 4H 2 SO 4(конц.) = 3ZnSO 4 + S + 4H 2 O

– при очень высокой температуре 4Zn + 5H 2 SO 4(конц.) = 4ZnSO 4 + H 2 S +4H 2 O;

· в разбавленной и концентрированной азотной кислоте функцию окислителя выполняет нитрат–ион (NO 3 –), поэтому продукты восстановления зависят от степени разбавления азотной кислоты и активности металлов. В зависимости от концентрации кислоты, металла (величины его стандартного электродного потенциала) и условий проведения опыта нитрат–ион восстанавливается до различных продуктов. Так, кальций в зависимости от концентрации азотной кислоты реагирует следующим образом:

4Ca +10HNO 3(оч. разб) = 4Ca(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4Ca + 10HNO 3(конц) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O.

Концентрированная азотная кислота не реагирует (пассивирует) с железом, алюминием, хромом, платиной и некоторвми другими металлами.

Взаимодействие металлов друг с другом. При высоких температурах металлы способны реагировать друг с другом с образованием сплавов. Сплавы могут быть твердыми растворами и химическими (интерметаллическими) соединениями (Mg 2 Pb, SnSb, Na 3 Sb 8 , Na 2 K и др.).

Свойства металлического хрома (…3d 5 4s 1). Простое вещество хром представляет собой блестящий на изломе серебристый металл, который хорошо проводит электрический ток, имеет высокую температуру плавления (1890°С) и кипения (2430°С), большую твердость (в присутствии примесей, очень чистый хром мягок) и плотность (7,2 г/см 3).

При обычной температуре хром устойчив к действию элементарных окислителей и воде благодаря плотной окисной пленке. При высоких температурах хром взаимодействует с кислородом и другими окислителями.

4Cr + 3O 2 ® 2Cr 2 O 3

2Cr + 3S (пар) ® Cr 2 S 3

Cr + Cl 2(газ) ® CrCl 3 (малиновый цвет)

Cr + HCl (газ) ® CrCl 2

2Cr + N 2 ® 2CrN (или Cr 2 N)

С металлами при сплавлении хром образует интерметаллиды (FeCr 2 , CrMn 3). При 600°С хром взаимодействует с парами воды:

2Cr + 3H 2 O ® Cr 2 O 3 + 3H 2 ­

В электрохимическом отношении металлический хром близок к железу:. Поэтому он может растворяться в неокисляющих (по аниону) минеральных кислотах, таких как галогеноводородные:

Сr + 2HCl ® CrCl 2(голубой цвет) + H 2 ­.

На воздухе идет быстро следующая стадия:

2CrCl 2 + 1/2O 2 + 2HCl ® 2CrCl 3 (зеленый цвет) + H 2 O

Окисляющие (по аниону) минеральные кислоты растворяют хром до трехвалентного состояния:

2Cr + 6H 2 SO 4 ® Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O

В случае с HNO 3(конц) происходит пассивация хрома – на поверхности образуется прочная пленка оксида – и металл не реагирует с кислотой. (Пассивный хром имеет высокий окислительно-восстановительный потенциал = + 1,3 В.)

Основная область применения хрома – металлургия: создание хромистых сталей. Так, в инструментальную сталь вводят 3 – 4% хрома, шарикоподшипниковая сталь содержит 0,5 – 1,5% хрома, в нержавеющей стали (один из вариантов): 18 – 25% хрома, 6 – 10% никеля, < 0,14% углерода, ~0,8% титана, остальное – железо.

Свойства металлического железа (…3d 6 4s 2). Железо – белый блестящий металл. Образует несколько кристаллических модификаций, устойчивых в определенном температурном интервале.

Химические свойства металлического железа определяются его положением в ряду напряжений металлов: .

При нагревании в атмосфере сухого воздуха железо окисляется:

2Fe + 3/2O 2 ® Fe 2 O 3

В зависимости от условий и от активности неметаллов железо может образовывать металлоподобные (Fe 3 C, Fe 3 Si, Fe 4 N), солеподобные (FeCl 2 , FeS) соединения и твердые растворы (с C, Si, N, B, P, H).

В воде железо интенсивно корродирует:

2Fe + 3/2O 2 +nH 2 O ® Fe 2 O 3 ×nH 2 O.

При недостатке кислорода образуется смешанный оксид Fe 3 O 4:

3Fe + 2O 2 + nH 2 O ® Fe 3 O 4 ×nH 2 O

Разбавленная соляная, серная и азотная кислоты растворяют железо до двухвалентного иона:

Fe + 2HCl ® FeCl 2 + H 2

4Fe + 10HNO 3(оч. разб.) ® 4Fe(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Более концентрированная азотная и горячая концентрированная серная кислоты окисляют железо до трехвалентного состояния (выделяются NO и SO 2 соответственно):

Fe + 4HNO 3 ® Fe(NO 3) 3 + NO + 2H 2 O

Очень концентрированная азотная кислота (плотность 1,4 г/см3) и серная (олеум) пассивируют железо, образуя на поверхности металла оксидные пленки.

Железо используют для получения железоуглеродистых сплавов. Велико биологическое значение железа, т.к. оно – составная часть гемоглобина крови. В организме человека содержится около 3 г железа.

Химические свойства металлического цинка (…3d 10 4s 2). Цинк – синевато-белый, пластичный и тягучий металл, но выше 200°С становится хрупким. Во влажном воздухе он покрывается защитной пленкой основной соли ZnCO 3 ×3Zn(OH) 2 или ZnO и дальнейшего окисления не происходит. При высоких температурах взаимодействует:

2Zn + O 2 ® 2ZnO

Zn + Cl 2 ® ZnCl 2

Zn + H 2 O (пар) ® Zn(OH) 2 + H 2 .

Исходя из величин стандартных электродных потенциалов, цинк вытесняет кадмий, который является его электронным аналогом, из солей: Cd 2+ + Zn ® Cd + Zn 2+ .

Благодаря амфотерности гидроокиси цинка металлический цинк способен растворяться в щелочах:

Zn + 2KOH + H 2 O ® K 2 + H 2

В разбавленных кислотах:

Zn + H 2 SO 4 ® ZnSO 4 + H 2

4Zn + 10HNO 3 ® 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

В концентрированных кислотах:

4Zn + 5H 2 SO 4 ® 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 8HNO 3 ® 3Zn(NO 3) 2 + 2NO + 4H 2 O

Значительная часть цинка расходуется для цинкования железных и стальных изделий. Широкое промышленное использование имеют сплавы цинка с медью (нейзильбер, латунь). Цинк широко используется при изготовлении гальванических элементов.

Химические свойства металлической меди (…3d 10 4s 1). Металлическая медь кристаллизуется в кубической гранецентрированной кристаллической решетке. Это ковкий мягкий, вязкий металл розового цвета с температурой плавления 1083°С. Медь находится на втором месте после серебра по электро- и теплопроводности, что обусловливает значение меди для развития науки и техники.

Медь реагирует с поверхности с кислородом воздуха при комнатной температуре, цвет поверхности становится темнее, а в присутствии CO 2 , SO 2 и паров воды покрывается зеленоватой пленкой основных солей (CuOH) 2 CO 3 , (CuOH) 2 SO 4 .

Медь непосредственно соединяется с кислородом, галогенами, серой:

4CuO 2Cu 2 O + O 2

Cu + S ® Cu 2 S

В присутствии кислорода металлическая медь взаимодействует с раствором аммиака при обычной температуре:

Находясь в ряду напряжений после водорода , медь не вытесняет его из разбавленных соляной и серной кислот. Однако в присутствии кислорода воздуха медь растворяется в этих кислотах:

2Cu + 4HCl + O 2 ® 2CuCl 2 + 2H 2 O

Окисляющие кислоты растворяют медь с переходом ее в двухвалентное состояние:

Cu + 2H 2 SO 4 ® CuSO 4 + SO 2 + 2H 2 O

3Cu + 8HNO 3(конц.) ® 3Cu(NO 3) 2 + NO 2 + 4H 2 O

Со щелочами медь не взаимодействует.

С солями более активных металлов медь взаимодействует, и эта окислительно-восстановительная реакция лежит в основе некоторых гальванических элементов:

Cu SO 4 + Zn® Zn SO 4 + Cu; E о = 1,1 B

Mg + CuCl 2 ® MgCl 2 + Cu; E о = 1,75 B.

Медь образует с другими металлами большое число интерметаллических соединений. Наибольшую известность и ценность имеют сплавы: латунь Cu–Zn (18 – 40% Zn), бронза Cu–Sn (колокольная – 20% Sn), инструментальная бронза Cu–Zn–Sn (11% Zn, 3 – 8% Sn), мельхиор Cu–Ni–Mn–Fe (68% Cu, 30% Ni, 1% Mn, 1% Fe).

Нахождение металлов в природе и способы получения. Вследствие высокой химической активности, металлы в природе находятся в виде различных соединений, и только малоактивные (благородные) металл – платина, золото и т.п. – встречаются в самородном (свободном) состоянии.

Наиболее распространенными природными соединениями металлов являются оксиды (гематит Fe 2 O 3 , магнетит Fe 3 O 4 , куприт Cu 2 O, корунд Al 2 O 3 , пиролюзит MnO 2 и др.), сульфиды (галенит PbS, сфалерит ZnS, халькопирит CuFeS, киноварь HgS и т.д.), а также соли кислородосодержащих кислот (карбонаты, силикаты, фосфаты и сульфаты). Щелочные и щелочноземельные металлы встречаются преимущественно в виде галогенидов (фторидов или хлоридов).

Основная масса металлов получается путем переработки полезного ископаемого – руды. Поскольку металлы, входящие в состав руд находятся в окисленном состоянии, то их получение осуществляется путем реакции восстановления. Предварительно руду очищают от пустой породы

Образовавшийся концентрат оксида металла очищают от воды, а сульфиды, для удобства последующей переработки, переводят в оксиды путем обжига, например:

2ZnS + 2O 2 = 2ZnO + 2SO 2 .

Для разделения элементов полиметаллических руд пользуются методом хлорирования. При обработке руд хлором в присутствии восстановителя образуются хлориды различных металлов, которые вследствие значительной и различной летучести могут быть легко отделены друг от друга.

Восстановление металлов в промышленности осуществляется посредством различных процессов. Процесс восстановления безводных соединений металлов при высоких температурах называют пирометаллургией. В качестве восстановителей используют металлы, более активные, чем получаемый, либо углерод. В первом случае говорят о металлотермии, во втором – карботермии, например:

Ga 2 O 3 + 3C = 2Ga + 3CO,

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3 ,

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

Особое значение углерод приобрел как восстановитель железа. Углерод для восстановления металлов применяется обычно в виде кокса.

Процесс восстановления металлов из водных растворов их солей относится к области гидрометаллургии. Получение металлов осуществляется при обычных температурах, причем в качестве восстановителей могут быть использованы сравнительно активные металлы или электроны катода при электролизе. Электролизом водных растворов солей могут быть получены только сравнительно малоактивные металлы, расположенные в ряду напряжений (стандартных электродных потенциалов) непосредственно перед водородом или после него. Активные металлы – щелочные, щелочноземельные, алюминий и некоторые другие, получают электролизом расплава солей.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий