Состав атомных ядер ядерные силы дефект массы. Строение атомного ядра. Ядерные силы. Протонно-нейтронная модель ядра

9 класс Дата____________________

Урок № ___

Тема урока: Состав атомного ядра. Ядерные силы. Энергия связи атомных ядер.

Цели:

    образовательная : рассмотреть из каких частиц состоит ядро атома; ввести понятия зарядового и массового числа, ядерной силы, дефекта масс, энергии связи, удельной энергии связи; ознакомить учащихся с формулами заряда ядра, дефекта масс, энергии связи, удельной энергии связи;

    развивающая : способствовать развитию кругозора квантовых явлений;

    воспитывающая: воспитывать интерес к предмету , управление своим вниманием, дисциплину.

Тип урока: комбинированный.

Оборудование: мультимедийная презентация, ПК.

Ход урока

1. Организационный момент.

Приветствие с учащимися, проверка присутствующих.

2. Актуализация знаний.

Фронтальный опрос:

    Что такое явление радиоактивности?

    Какие существуют модели атомов?

    Какие виды взаимодействий в природе Вам известны?

3. Мотивация учебной деятельности

Опыты Резерфорда доказали, что атом состоит из маленького положительно заряженного ядра и вращающихся вокруг него электронов. Оказалось, что по сравнению с размером самого атома (около 10 -10 м) ядро крайне мало (около 10 -15 м). То есть ядро меньше атома в 100 000 раз.

Чтобы представить себе, что это означает, рассмотрим такую наглядную модель. Представьте себе, что атомное ядро увеличено до размеров горошины. Тогда диаметр атома будет равен высоте Останкинской телебашни.

4. Изучение нового материала

Состав атомного ядра

Дальнейшие исследования показали, что заряд атомного ядра равен произведению порядкового номера Z элемента в периодической таблице Д.И. Менделеева на элементарный заряд е.

q я =Ze

Таким образом, порядковый номер химического элемента определяет заряд атомного ядра, а, следовательно, и число электронов в атоме. Поэтому число Z называют зарядовым числом .

После открытия Резерфордом в 1911 г. атомного ядра многочисленные эксперименты подтвердили, что атомные ядра, как и сами атомы, имеют сложную структуру. В 1913 г. Резерфорд выдвинул гипотезу, согласно которой ядро атома водорода представляет собой элементарную частицу – протон, которая входит в состав ядер всех химических элементов. В то время уже было известно, что массы атомов химических элементов превышают массу атома водорода в целое число раз (то есть кратны ей).

Однако ядро не может состоять из одних протонов. Если бы это было так, то масса ядра любого химического элемента равнялась бы массе Z протонов. Но на самом деле массы ядер всех элементов гораздо больше. Поэтому в 1920 г. Резерфорд высказал предположение о существовании электрически нейтральной частицы с массой, приблизительно равной массе протона. Позднее эта частица была обнаружена экспериментально. Ее назвали нейтроном .

В 1932 г. советские ученые Е.Н. Гапон и Д.Д. Иваненко и немецкий физик Гайзенберг предложили протонно-нейтронную модель ядра атома . По этой теории все ядра состоят из двух видов частиц – протонов и нейтронов. Протоны и нейтроны называются нуклонами (от лат. nucleus ядро).

Общее число нуклонов в ядре называется массовым числом и обозначается буквой А. Массовое число А численно равно массе ядра, выраженной в атомных единицах массы и округленной до целых чисел.

Атомная единица массы (1 а. е. м.) равна 1/12 части массы атома углерода.

Число протонов соответствует порядковому (атомному) номеру элемента. Разница между массовым и зарядовым числом равна числу нейтронов.

Любой химический элемент периодической таблицы Д.И. Менделеева можно представить формулой:

А - массовое число

Z - зарядовое число

Массовое число равно сумме протонов и нейтронов.

Зарядовое число – это атомный номер, который равен числу протонов в ядре.

Ядерные силы

В природе существуют четыре типа взаимодействий: гравитация, электромагнитные, сильные и слабые. Мы рассмотрим только три из них.

1. При этом типе взаимодействия тела всегда притягиваются друг к другу. Сила взаимодействия уменьшается с увеличением расстояния между телами.

2. Взаимодействие между двумя заряженными частицами называется электромагнитным. Существует 2 типа электрических зарядов: положительный (+) и отрицательный (-). При электромагнитных взаимодействиях заряженные тела могут как притягиваться друг к другу, так и отталкиваться.

Электромагнитные взаимодействия действуют на достаточно больших расстояниях. Сила взаимодействия уменьшается с возрастанием расстояния между телами.

k (постоянная Кулона) = 9*10 9

Сравним силы гравитационного (F e-р(rpaв) ) и электромагнитного взаимодействий (F е-р(элм) ), которые действуют между протоном и электроном:

Отсюда следует, что сила гравитации для элементарных частиц намного меньше силы электромагнитного взаимодействия.

В мире элементарных частиц мы можем пренебречь гравитацией.

3. Силы, которые скрепляют отдельные протоны и нейтроны в ядре называются ядерными , а соответствующее взаимодействие сильным. Оно на много порядков величин превышает гравитационное притяжение между протонами и нейтронами в ядре и доминирует над электромагнитными силами кулоновского отталкивания одноименно заряженных протонов внутри ядра.

Важнейшей особенностью ядерных сил является короткий радиус их действия. Они действуют только внутри атомного ядра, то есть на масштабах фемтометров (10 -15 м). Законы ядерных взаимодействий – это законы квантовой физики, и они носят совершенно другой характер, чем уже известные нам гравитационные взаимодействия.

Отметим два свойства ядерных сил:

    На расстоянии между нуклонами внутри ядра порядка 1 фм и больше силы носят характер притяжения, но при сближении протонов или нейтронов на расстоянии меньше 1 фм возникают силы отталкивания. Это препятствует сжатию ядер до еще меньших размеров.

    Экспериментально доказано, что ядерные силы между двумя протонами, двумя нейтронами и протоном и нейтроном практически одинаковы. Это свойство называют зарядовой независимостью ядерных сил .

О
ткрытие протона:

С древних времен алхимики пытались получить золото из различных элементов. Но никому не удавалось превратить один элемент в другой. И только в 1919 г. Резерфорд провел опыты, в которых было впервые осуществлено превращение элементов.

Установка Резерфорда состояла из источника α-частиц и регистратора этих частиц – флуоресцирующего экрана. Все это устройство было помещено в сосуд с чистым воздухом. На экране можно было наблюдать бледные вспышки. Позднее учеными было обнаружено, что в воздухе происходит ядерная реакция, в которой α-частицы сталкиваются с ядрами азота. В результате образуются ядро кислорода и ядро водорода, которое Резерфорд назвал протоном .

Энергия связи атомных ядер

Вы знаете, что атомное ядро состоит из протонов и нейтронов, которые связаны между собой в ядре ядерными силами. Можно предположить, что масса каждого ядра должна быть равна сумме масс содержащихся в нем протонов и нейтронов.

Проверим это предположение. Масса протона и нейтрона в атомных единицах массы равны соответственно m р = 1,0073 а.е.м. и m n = 1,0087 а.е.м.

Сложив массы протонов и нейтронов, мы получим, что масса ядра гелия равна M я = 4,032 а.е.м. Однако экспериментально было обнаружено, что масса ядра гелия равна M я = 4,0026 а.е.м. Другими словами, масса ядра меньше суммы масс составляющих его нуклонов. Разность между суммой масс отдельных нуклонов и массой ядра называют дефектом масс .

Дефект массы ядра гелия равен Δm = (2 1,0073 а.е.м. + 2 1,0087 а.е.м.) - 4,0026 а.е.м. = 0,0294 а.е.м.

Для того чтобы разбить ядро на отдельные, не взаимодействующие между собой нуклоны, необходимо произвести работу по преодолению ядерных сил, то есть сообщить ядру энергию. Из закона сохранения энергии следует, что эта энергия равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Минимальная энергия, которую необходимо затратить для полного расщепления ядра на отдельные частицы, называется энергией связи ядра .

Энергию связи любого ядра можно определить с помощью формулы Эйнштейна, которая устанавливает взаимосвязь между массой и энергией:

E св = Δm с 2 = (
) с 2 , где Δm – дефект массы, с – скорость света в вакууме.

Вычислим энергию связи ядра гелия.

Для того, чтобы энергию связи получить в джоулях, дефект масс нужно выразить в килограммах.

Учитывая, что 1 а.е.м. = 1,6605 10 -27 кг, получим

Δm = 0,0294 а.е.м. = 0,0488 10 -27 кг

Е св = 0,0488 10 -27 кг (2,9979 10 8 ) 2 = 0,4388 10 -11 Дж

Это огромная величина. Образование всего 1 г гелия сопровождается выделением энергии порядка 10 12 Дж. Примерно такая же энергия выделяется при сгорании почти целого вагона каменного угля.

У
стойчивость ядер характеризует физическая величина, называемая удельной энергией связи . Она равна энергии связи, которая приходится только на одну ядерную частицу (протон или нейтрон): Е уд = Е св / А. По графику зависимости удельной энергии связи от массового числа элементов можно заметить, что для легких ядер энергия связи очень мала. Удельная энергия связи имеет наибольшее значение для ядер атомов, расположенных в средней части периодической системы элементов с массовыми числами от 28 до 138. С дальнейшим ростом массового числа энергия связи убывает.

5. Формирование умений и навыков

Определить заряд, дефект масс и энергию связи ядра атома алюминия (Z = 13, A = 27, М я = 26,9815).

6. Итоги урока

Рефлексия:

    Из каких частиц состоит атомное ядро?

    Чему равно массовое число атома?

    Как называются силы, которые удерживают протоны и нейтроны в ядре?

    Что такое дефект масс?

    Что такое энергия связи ядра?

7. Домашнее задание

§1 Заряд и масса, атомных ядер

Важнейшими характеристиками ядра являются его заряд и масса М .

Z - заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10 -19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам суще-ственно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен q я = z · e , где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.

Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10 -4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята1/12 масса атома углерода .

1 ае.м. =1,6605655(86)·10 -27 кг.

m я = m a - Z m e .

Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.

Целое число ближайшее к атомной массе, выраженной в а.е. м . называется массовым число м и обозначается буквой А . Обозначение химического эле-мента: А - массовое число, X - символ химического элемента, Z -зарядовое чис-ло - порядковый номер в таблице Менделеева ():

Бериллий ; Изотопы: , ", .

Радиус ядра:

где А - массовое число.

§2 Состав ядра

Ядро атома водорода называется протоном

m протона = 1,00783 а.е.м. , .

Схема атома водорода

В 1932 г. была открыта частица названная нейтроном, обладающая мас-сой близкой к массе протона (m нейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А . 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z .

Элементарные частицы - протоны и нейтроны, входящие в состав ядра , получили общее название нуклонов. Нуклоны ядер находятся в состояниях , существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое я де р ное взаимодействие. Говорят, что нуклон может находиться в двух «зарядовых состояниях» - протонном с зарядом + е , и ней-тронном с зарядом 0.

§3 Энергия связи ядра. Дефект массы. Ядерные силы

Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, спо-собные противостоять огромным силам отталкивания между одноименно за-ряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).

Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:

а) это силы короткодействующие - проявляющееся на расстояниях порядка 10 -15 м и резко убывающие даже при незначительном увеличения рас-стояния;

б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - за-рядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.

Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на со-ставляющие его нуклоны без сообщения им кинетической энергии

М Я < Σ(m p + m n )

Мя - масса ядра

Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.

Величина

служит мерой энергия связи и называется дефектом массы.

Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.

В общем случае энергия связи ядра может быть подсчитана по формуле

где Z - зарядовое число (число протонов в ядре);

А - массовое число (общее число нуклонов в ядре);

m p , , m n и М я - масса протона, нейтрона а ядра

Дефект массы (Δm ) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) со-ответствует энергий связи (Е св), равной 1 а.е.э. (а.е.э. - атомная единица энер-гии) и равной 1а.е.м.·с 2 = 931 МэВ.

§ 4 Ядерные реакции

Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.

Различают следующие, наиболее часто встречающиеся ядерные реакции.

  1. Реакция превращения . В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэто-му ядро - продукт отличается от ядра-мишени.
  1. Реакция радиационного захвата . Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая γ- фотон (используется в работе ядерных реакторов)

Пример реакции захвата нейтронов кадмием

или фосфором


  1. Рассеяние . Промежуточное ядро испускает частицу, тождественную

с налетевшей, причем может быть:

Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):

Неупругое рассеяние :

  1. Реакция деления . Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выде-лением нескольких нейтронов.

Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания γ - фотона или нейтрона, воз-вратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энер-гия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с ог-ромными скоростями, при этом испускается два нейтрона
(рис. 2).

Цепная реакция - саморазвивающаяся реакция деления. Для осуществ-ления её необходимо, чтобы из вторичных нейтронов, образующихся при од-ном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деле-ния) . Количественно условие существования цепной реакции выражает коэффициент размножения

k < 1 - цепная реакция невозможна, k = 1 (m = m кр ) - цепная реакций с по-стоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > m кр ) - ядерные бомбы.

РАДИОАКТИВНОСТЬ

§1 Естественная радиоактивность

Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существую-щих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных ре-акций.

Типы радиоактивности:

  1. α-распад.

Испускание ядрами некоторых химических элементов α-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома ге-лия )

α-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веще-стве α-частицы производят на своем пути сильную ионизацию атомов (иони-зация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает α-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью (обозначается R , [ R ] = м, см). . При нормальных условиях α- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизаци-ей называется число пар ионов образующихся на 1 см длины пробега. α- частица оказывает сильное биологическое действие.

Правило смещения для α-распада:

2. β-распад.

а) электронный (β -): ядро испускает электрон и электронное антинейтрино

б) позитронный (β +):ядро испускает позитрон и нейтрино

Эта процессы происходят, путем превращения одного вида нуклона в яд-ре в другой: нейтрона в протон или протона в нейтрон.

Электронов в ядре нет, они образуются в результате взаимного превра-щения нуклонов.

Позитрон - частица, отличающаяся от электрона только знаком за-ряда (+е = 1,6·10 -19 Кл)

Из эксперимента следует, что при β - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии β - частицами при прохождении их через вещество вызываются, главным обра-зом, процессами ионизации. Часть энергии теряется на рентгеновское излуче-ние при торможении β - частицы ядрами поглощающего вещества. Так как β - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у α - частиц), следовательно, проникающая способность (пробег) у β - частиц суще-ственно больше, чем у α - частиц.

R β воздуха =200 м, R β Pb ≈ 3 мм

β - - распад происходит у естественных и искусственных радиоактивных ядер. β + - только при искусственной радиоактивности.

Правило смещения для β - - распада :

в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М ) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино

Схема К - захвата:

Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

  • γ-лучи.

Обычно все типы радиоактивности сопровождаются испусканием γ- лучей. γ-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем λ’=~ 1-0,01 Å=10 -10 -10 -12 м. Энергия γ-лучей достигает миллионов эВ.

W γ ~ MэB

1эВ=1,6·10 -19 Дж

Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испуска-нием γ - фотона. При этом энергия γ-фотона определяется условием

где Е 2 и E 1 -энергия ядра.

Е 2 - энергия в возбужденном состоянии;

Е 1 - энергия в основном состоянии.

Поглощение γ-лучей веществом обусловлено тремя основными процессами:

  • фотоэффектом (при hv < l MэB);
  • образованием пар электрон - позитрон;

или

  • рассеяние (эффект Комптона) -

Поглощение γ-лучей происходит по закону Бугера:

где μ- линейный коэффициент ослабления, зависящий от энергий γ - лучей и свойств среды;

І 0 - интенсивность падающего параллельного пучка;

I - интенсивность пучка после прохождения вещества толщиной х см.

γ-лучи - одно из наиболее проникающих излучений. Для наиболее жест-ких лучей (hν max ) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.

§2 Основной закон радиоактивного распада.

Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt , dN ~ N dt . Основной закон радиоактивного распада в дифференциальной форме:

Коэффициент λ называется постоянной распада для данного вида ядер. Знак “-“ означает, что dN должно быть отрицательным, так как конечное чис-ло не распавшихся ядер меньше начального.

следовательно, λ характеризует долю ядер, распадающихся за единицу време-ни, т е. определяет скорость радиоактивного распада. λ не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [λ]=с -1 .

Основной закон радиоактивного распада в интегральной форме

где N 0 - первоначальное число радиоактивных ядер при t =0;

N - число не распавшихся ядер в момент времени t ;

λ - постоянная радиоактивного распада.

О скорости распада на практике судят используя не λ, а Т 1/2 - период по-лураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и λ

Т 1/2 U 238 = 4,5·10 6 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = - dN / dt называется активностью данного радиоактивного вещества.

Из

следует,

[А] = 1Беккерель = 1распад/1с;

[А] = 1Ки = 1Кюри= 3,7·10 10 Бк.

Закон изменения активности

где А 0 =λ N 0 - начальная активность в момент времени t = 0;

А - активность в момент времени t .

Лекция 18. Элементы физики атомного ядра

План лекции

    Атомное ядро. Дефект массы, энергия связи ядра.

    Радиоактивное излучение и его виды. Закон радиоактивного распада.

    Законы сохранения при радиоактивных распадах и ядерных реакциях.

1.Атомное ядро. Дефект массы, энергия связи ядра.

Состав атомного ядра

Ядерная физика - наука о строении, свойствах и превращениях атомных ядер. В 1911 году Э. Резерфорд установил в опытах по рассеянию -частиц при их прохождении через вещество, что нейтральный атом состоит из компактного положительно заряженного ядра и отрицательного электронного облака. В. Гейзенберг и Д.Д. Иваненко (независимо) высказали гипотезу о том, что ядро состоит из протонов и нейтронов.

Атомное ядро - центральная массивная часть атома, состоящая из протонов и нейтронов, которые получили общее название нуклонов . В ядре сосредоточена почти вся масса атома (более 99,95%). Размеры ядер порядка 10 -13 - 10 -12 см и зависят от числа нуклонов в ядре. Плотность ядерного вещества как для легких, так и для тяжелых ядер почти одинакова и составляет около 10 17 кг/м 3 , т.е. 1 см 3 ядерного вещества весил бы 100 млн. т. Ядра имеют положительный электрический заряд, равный абсолютной величине суммарного заряда электронов в атоме.

Протон (символ p) - элементарная частица, ядро атома водорода. Протон обладает положительным зарядом, равным по величине заряду электрона. Масса протона m p = 1,6726 10 -27 кг = 1836 m e , где m e - масса электрона.

В ядерной физике принято выражать массы в атомных единицах массы:

1 а.е.м. = 1,65976 10 -27 кг.

Следовательно, масса протона, выраженная в а.е.м., равна

m p = 1,0075957 а.е.м.

Число протонов в ядре называется зарядовым числом Z. Оно равно атомному номеру данного элемента и, следовательно, определяет место элемента в периодической системе элементов Менделеева.

Нейтрон (символ n) - элементарная частица, не обладающая электрическим зарядом, масса которой незначительно больше массы протона.

Масса нейтрона m n = 1,675 10 -27 кг = 1,008982 а.е.м. Число нейтронов в ядре обозначается N.

Суммарное число протонов и нейтронов в ядре (число нуклонов) называется массовым числом и обозначается буквой А,

Для обозначения ядер применяется символ , где Х - химический символ элемента.

Изотопы - разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов (Z) и разное число нейтронов (N). Изотопами называют также ядра таких атомов. Изотопы занимают одно и то же место в периодической системе элементов. В качестве примера приведем изотопы водорода:

Понятие о ядерных силах.

Ядра атомов - чрезвычайно прочные образования, несмотря на то, что одноименно заряженные протоны, находясь на очень малых расстояниях в атомном ядре, должны с огромной силой отталкиваться друг от друга. Следовательно, внутри ядра действуют чрезвычайно большие силы притяжения между нуклонами, во много раз превышающие электрические силы отталкивания между протонами. Ядерные силы представляют собой особый вид сил, это самые сильные из всех известных взаимодействий в природе.

Исследования показали, что ядерные силы обладают следующими свойствами:

    ядерные силы притяжения действуют между любыми нуклонами, независимо от их зарядового состояния;

    ядерные силы притяжения являются короткодействующими: они действуют между любыми двумя нуклонами на расстоянии между центрами частиц около 2·10 -15 м и резко спадают при увеличении расстояния (при расстояниях более 3·10 -15 м они уже практически равны нулю);

    для ядерных сил характерна насыщенность, т.е. каждый нуклон может взаимодействовать только с ближайшими к нему нуклонами ядра;

    ядерные силы не являются центральными, т.е. они не действуют вдоль линии, соединяющей центры взаимодействующих нуклонов.

В настоящее время природа ядерных сил изучена не до конца. Установлено, что они являются так называемыми обменными силами. Обменные силы носят квантовый характер и не имеют аналога в классической физике. Нуклоны связываются между собой третьей частицей, которой они постоянно обмениваются. В 1935 г. японский физик Х. Юкава показал, что нуклоны обмениваются частицами, масса которых примерно в 250 раз больше массы электрона. Предсказанные частицы были обнаружены в 1947 г. английским ученым С. Пауэллом при изучении космических лучей и впоследствии названы -мезонами или пионами.

Взаимные превращения нейтрона и протона подтверждаются различными экспериментами.

Дефект масс атомных ядер. Энергия связи атомного ядра.

Нуклоны в атомном ядре связаны между собой ядерными силами, поэтому, чтобы разделить ядро на составляющие его отдельные протоны и нейтроны, необходимо затратить большую энергию.

Минимальная энергия, необходимая для разделения ядра на составляющие его нуклоны, называется энергией связи ядра . Такая же по величине энергия освобождается, если свободные нейтроны и протоны соединяются и образуют ядро.

Точные масс-спектроскопические измерения масс ядер показали, что масса покоя атомного ядра меньше суммы масс покоя свободных нейтронов и протонов, из которых образовалось ядро. Разность между суммой масс покоя свободных нуклонов, из которых образовано ядро, и массой ядра называется дефектом массы :

Этой разности масс m соответствует энергия связи ядра Е св , определяемая соотношением Эйнштейна:

или, подставив выражение для m , получим:

Энергию связи обычно выражают в мегаэлектронвольтах (МэВ). Определим энергию связи, соответствующую одной атомной единице массы (, скорость света в вакууме
):

Переведем полученную величину в электронвольты:

В связи с этим на практике удобнее пользоваться следующим выражением для энергии связи:

где множитель m выражен в атомных единицах массы.

Важной характеристикой ядра служит удельная энергия связи ядра, т.е. энергия связи, приходящаяся на нуклон:

.

Чем больше , тем сильнее связаны между собой нуклоны.

Зависимость величины  от массового числа ядра показана на рисунке 1. Как видно из графика, сильнее всего связаны нуклоны в ядрах с массовыми числами порядка 50-60 (Cr-Zn). Энергия связи для этих ядер достигает

Состав атомного ядра
Общее число нуклонов в данном ядре
называется массовым числом, обозначается
Число протонов в ядре называется
зарядовым числом, обозначается
(оно равно номеру химического элемента)
Число нейтронов в ядре обозначается
Ядро атома обозначают так же, как и
соответствующий химический элемент,
ставя перед ним вверху – массовое число,
а внизу - зарядовое число
207
Например: 235
Pb
82
92
U

Протонно-нейтронная модель ядра
1
1
p
протон
+
Ядро
Z – число протонов в ядре
N – число нейтронов в ядре
m p mN 1а.е.м.
me mядра
нейтрон 1
0
n
А = Z+N – массовое число
А = М (округляют до целого числа)
Сколько протонов и нейтронов содержится в ядре изотопов урана?
А) 235
92
U
А=235
Б) 238
Z=92
92
N=A-Z = 235-92=143
U
А=238
Z=92
N=A-Z = 238-92=146

Изотопы

У одного и того же химического элемента
встречаются атомы с различными по массе
ядрами.
Ядра с одинаковым зарядом, но разными массами
назвали изотопами.
Изотопы (от греческих слов isos – одинаковый и topos
– место) имеют одинаковый порядковый номер в
таблице Менделеева
У изотопов одинаковое число протонов, но разное
число нейтронов.
Изотопы
физические
3 свойства
1 имеют разные
2
Например:
водород1 имеет три изотопа
1
1
H
протий
Н
Н
дейтерий
тритий

99,985%
0,015%
Природный изотопный состав Н
10 15 10 16%

17
С 1906 г. известно
35
17
Cl
Cl
37
17
М = 35,457
Cl
92
U
239
92
U
234
92
U
235
92
U
238
92
U
М = 238,0289

Какие силы обеспечивают устойчивость атомного ядра?

Вариант ответа: Гравитационные силы
Ответ неверный, так как эти силы
значительно меньше электростатических сил
отталкивания между протонами.
Современные учёные для объяснения
устойчивости ядра используют понятие
ядерных сил
Ядерные силы – это силы, действующие
между нуклонами в ядре и обеспечивающие
существование устойчивых ядер
Ядерные силы относятся к сильному
взаимодействию

Свойства ядерных сил

Ядерные силы - это силы притяжения, так как они
удерживают нуклоны внутри ядра (при очень сильном
сближении нуклонов ядерные силы между ними имеют
характер отталкивания).
Ядерные силы – это не электрические силы, так как они
действуют не только между протонами, но и между не
имеющими зарядов нейтронами, и не гравитационные,
которые слишком малы для объяснения ядерных эффектов.
Изучение степени связанности нуклонов в разных ядрах
показывают, что ядерные силы обладают свойством
насыщения, аналогичным валентности химических сил.
В соответствии с этим свойством ядерных сил один
и тот же нуклон взаимодействует не со всеми
остальными нуклонами ядра, а только с несколькими
соседними.

Свойства ядерных сил

Важнейшим свойством ядерных сил является их зарядовая
независимость, то есть тождественность трёх типов
ядерного взаимодействия: между двумя протонами, между
протоном и нейтроном, и между двумя нейтронами.
Область действия ядерных сил, ничтожно мала.
Радиус их действия 10 -13 м. При больших расстояниях
между частицами ядерное взаимодействие не проявляется.
Ядерные силы (в той области, где они действуют) очень
интенсивные. Их интенсивность значительно больше
интенсивности электромагнитных сил, так как ядерные силы
удерживают внутри ядра, одноимённо заряженные протоны,
отталкивающиеся друг от друга с огромными
электрическими силами.
С увеличением расстояния очень быстро убывают.
(на расстоянии 1,4 10 15 м их действием можно
пренебречь)

Решение задач
1. Сколько нуклонов содержат ядра:
6
3
Li
64
29
108
47
Cu
Ag
207
82
Pb
2. Определите нуклоновый состав ядер:
4
2
He
16
8
O
79
34
Se
3. Назовите химический элемент, в атомном ядре
которого содержатся нуклоны:
А). 7p + 7n
14
7
N
Б). 18p + 22n 40 Ar
18
В). 33p + 42n
75
33
Г). 84p + 126n
210
84
As
Po

РАДИОАКТИВНОСТЬ

Открытие рентгеновских лучей
дало толчок новым
исследованиям. Их изучение привело к новым открытиям, одним
из которых явилось открытие радиоактивности.
Примерно с середины XIX
стали появляться
экспериментальные факты, которые ставили под сомнение
представления о неделимости атомов. Результаты этих
экспериментов наводили на мысль о том, что атомы имеют
сложную структуру и что в их состав входят электрически
заряженные частицы.
Наиболее ярким
свидетельством сложного
строения атома явилось
открытие явления
радиоактивности, сделанное
французским физиком Анри
Беккерелем в 1896 году.

Ученые пришли к выводу, что
радиоактивность представляет собой
самопроизвольный процесс, происходящий в атомах
радиоактивных элементов. Теперь это явления
определяют как самопроизвольное превращение
неустойчивого изотопа одного химического элемента
в изотоп другого элемента; при этом происходит
испускание электронов, протонов, нейтронов или
ядер гелия (α-частиц).

За 10 лет совместной
работы они сделали очень
многое для изучения
явления
радиоактивности.
Это был беззаветный
труд во имя науки – в
плохо оборудованной
лаборатории и при
отсутствии необходимых
средств.
Мария и Пьер Кюри в лаборатории

a - лучи
- лучи
b - лучи

a - частица – ядро атома гелия. a- лучи
обладают наименьшей проникающей
способностью. Слой бумаги толщиной около
0,1 мм для них уже не прозрачен. Слабо
отклоняются в магнитном поле.
У a- частицы на каждый из двух
элементарных зарядов приходится две
атомные единицы массы. Резерфорд
доказал, что при радиоактивном a - распаде
образуется гелий.

β - частицы представляют собой электроны,
движущиеся со скоростями, очень
близкими к скорости света. Они сильно
отклоняются как в магнитном, так и в
электрическом поле. β – лучи гораздо
меньше поглощаются при прохождении
через вещество. Алюминиевая пластинка
полностью их задерживает только при
толщине в несколько миллиметров.

- лучи представляют собой
электромагнитные волны. По своим
свойствам очень сильно напоминают
рентгеновские, но только их проникающая
способность гораздо больше, чем у
рентгеновских лучей. Не отклоняются
магнитным полем. Обладают наибольшей
проникающей способностью. Слой свинца
толщиной в 1 см не является для них
непреодолимой преградой. При прохождении
– лучей через такой слой свинца их
интенсивность убывает лишь вдвое.

Испуская α – и b - излучение, атомы
радиоактивного элемента изменяются,
превращаясь в атомы нового элемента.
В этом смысле испускание радиоактивных
излучений называют радиоактивным распадом.
Правила, указывающие смещение
элемента в периодической системе, вызванное
распадом, называются правилами смещения.

a –распад
-распад
b -распад

a – распадом называется
самопроизвольный распад атомного ядра на
a – частицу (ядро атома гелия 24 He) и ядропродукт. Продукт a – распада оказывается
смещенным на две клетки к началу
периодической системы Менделеева.
M
Z
X
M 4
Z 2
Y He
4
2

b – распадом называется
самопроизвольное превращение атомного
ядра путем испускания электрона. Ядро –
продукт бета-распада оказывается ядром
одного из изотопов элемента с порядковым
номером в таблице Менделеева на единицу
большим порядкового номера исходного
ядра.
M
Z
X Y e
M
Z 1
0
1

– излучение не сопровождается
изменением заряда; масса же ядра меняется
ничтожно мало.
M
Z
X Y
M
Z
0
0

Радиоактивный распад –
радиоактивное (самопроизвольное)
превращение исходного (материнского) ядра
в новые (дочерние) ядра.
Для каждого радиоактивного вещества
существует определенный интервал
времени, на протяжении которого
активность убывает в два раза.

Период полураспада Т – это
время, в течение которого
распадается половина
наличного числа
радиоактивных атомов.
N0 – число радиоактивных атомов в
начальный момент времени.
N – число нераспавшихся атомов в
любой момент времени.

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий