Нормальное распределение случайной величины и правило трех сигм. Распределение Гаусса (нормальное распределение) Функция распределения нормально распределенной случайной величины

Закон нормального распределения, так называемый закон Гаусса - один из самых распространенных законов. Это фундаментальный закон в теории вероятностей и в ее применении. Нормальное распределение чаще всего встречается в изучении природных и социально-экономических явлений. Иначе говоря, большинство статистических совокупностей в природе и обществе подчиняется закону нормального распределения. Соответственно можно сказать, что совокупности большого числа крупных по объему выборок подчиняются закону нормального распределения. Те из совокупностей, которые отклоняются от нормального распределения в результате специальных преобразований, могут быть приближены к нормальному. В связи с этим следует помнить, что принципиальная особенность этого закона применительно к другим законам распределения заключается в том, что он является законом границы, к которой приближаются другие законы распределения в определенных (типовых) условиях.

Следует отметить, что термин "нормальное распределение" имеет условный смысл, как общепринятый в математической и статистико-математической литературе термин. Утверждение, что тот или иной признак любого явления подчиняется закону нормального распределения, вовсе не означает незыблемость норм, будто присущих исследуемому явлению, а отнесения последнего ко второму виду закона не означает какую-то анормальнисть данного явления. В этом смысле термин "нормальное распределение" не совсем удачен.

Нормальное распределение (закон Гаусса-Лапласа) является типом непрерывного распределения. Где Муавр (одна тысяча семьсот семьдесят три, Франция) вывел нормальный закон распределения вероятностей. Основные идеи этого открытия были использованы в теории ошибок впервые К. Гауссом (1809, Германия) и А.Лапласом (1812, Франция), которые внесли витчутний теоретический вклад в разработку самого закона. В частности, К. Гаусс в своих разработках исходил из признания наиболее вероятным значением случайной величины-среднюю арифметическую. Общие условия возникновения нормального распределения установил А.М.Ляпунова. Им было доказано, что если исследуемая признак представляет собой результат суммарного воздействия многих факторов, каждый из которых мало связан с большинством остальных, и влияние каждого фактора на конечный результат гораздо перекрывается суммарным воздействием всех остальных факторов, то распределение становится близким к нормальному.

Нормальным называют распределение вероятностей непрерывной случайной величины, имеет плотность:

1 +1 (& #) 2

/ (х, х, <т) = - ^ е 2 ст2

где х - математическое ожидание или средняя величина. Как видно, нормальное распределение определяется двумя параметрами: х и °. Чтобы задать нормальное распределение, достаточно знать математическое ожидание или среднее и среднее квадратическое отклонение. Эти две величины определяют центр группировки и форму

кривой на графике. График функции и (хх, в) называется нормальной кривой (кривая Гаусса) с параметрами х и в (рис. 12).

Кривая нормального распределения имеет точки перегиба при X ± 1. Если представить графически, то между X = + l и 1 = -1 находится 0,683 части всей площади кривой (т.е. 68,3%). В границах X = + 2 и X- 2. находятся 0,954 площади (95,4%), а между X = + 3 и X = - 3 - 0,997 части всей площади распределения (99,7%). На рис. 13 проиллюстрирован характер нормального распределения с одно-, двух- и трисигмовою границами.

При нормальном распределении средняя арифметическая, мода и медиана будут равны между собой. Форма нормальной кривой имеет вид одновершинные симметричной кривой, ветки которой асимптотически приближаются к оси абсцисс. Наибольшая ордината кривой соответствует х = 0. В этой точке на оси абсцисс размещается численное значение признаков, равное средней арифметической, моде и медиане. По обе стороны от вершины кривой ее ветки приходят, изменяя в определенных точках форму выпуклости на вогнутость. Эти точки симметричные и соответствуют значениям х = ± 1, то есть величинам признаки, отклонения которых от средней численно равна среднему квадратичному отклонению. Ордината, что соответствует средней арифметической, делит всю площадь между кривой и осью абсцисс пополам. Итак, вероятности появления значений исследуемого признака больших и меньших средней

арифметической будут равны 0,50, то есть х, (~ ^ х) = 0,50 В

Рис.12. Кривая нормального распределения (кривая Гаусса)

Форму и положение нормальной кривой обусловливают значение средней и среднего квадратичного отклонения. Математически доказано, что изменение величины среднего (математического ожидания) не изменяет формы нормальной кривой, а приводит лишь к ее смещение вдоль оси абсцисс. Кривая сдвигается вправо, если ~ растет, и влево, если ~ приходит.

Рис.14. Кривые нормального распределения с различными значениями параметра в

Об изменении формы графика нормальной кривой при изменении

среднего квадратичного отклонения можно судить по максимуму

дифференциальной функции нормального распределения, равный 1

Как видно, при росте величины ° максимальная ордината кривой будет уменьшаться. Следовательно, кривая нормального распределения будет сжиматься к оси абсцисс и принимать более плосковершинных форму.

И, наоборот, при уменьшении параметра в нормальная кривая вытягивается в положительном направлении оси ординат, а форма "колокола" становится более гостровершиною (рис. 14). Отметим, что независимо от величины параметров ~ и в площадь, ограниченная осью абсцисс и кривой, всегда равен единице (свойство плотности распределения). Это наглядно иллюстрирует график (рис. 13).

Названные выше особенности проявления "нормальности" распределения позволяют выделить ряд общих свойств, которые имеют кривые нормального распределения:

1) любой нормальный кривая достигает точки максимума = х) приходит непрерывно вправо и влево от него, постепенно приближаясь к оси абсцисс;

2) любой нормальный кривая симметрична по отношению к прямой,

параллельной оси ординат и проходит через точку максимума = х)

максимальная ордината равна ^^^ я;

3) любой нормальный кривая имеет форму "колокола", имеет выпуклость, которая направлена вверх к точке максимума. В точках х ~ ° и х + в она меняет выпуклость, и, чем меньше а, тем острее "колокол", а чем больше а, тем более похилишою становится вершина "колокола" (рис.14). Изменение математического ожидания (при неизменной величине

в) не приводит к модификации формы кривой.

При х = 0 и ° = 1 нормальную кривую называют нормированной кривой или нормальным распределением в каноническом виде.

Нормированная кривая описывается следующей формуле:

Построение нормальной кривой по эмпирическим данным производится по формуле:

пи 1 - "" = --- 7 = е

где и ™ - теоретическая частота каждого интервала (группы) распределения; "- Сумма частот, равную объему совокупности; "- шаг интервала;

же - отношение длины окружности к ее диаметру, которое составляет

е - основание натуральных логарифмов, равна 2,71828;

Вторая и третья части формулы) является функцией

нормированного отклонения ЦЧ), которую можно рассчитать для любых значений X. Таблицы значений ЦЧ) обычно называют "таблицы ординат нормальной кривой" (приложение 3). При использовании этих функций рабочая формула нормального распределения приобретает простого вида:

Пример. Рассмотрим случай построения нормальной кривой на примере данных о распределении 57 работников по уровню дневного заработка (табл. 42). По данным таблицы 42, находим среднюю арифметическую:

~ = ^ = И6 54 =

Рассчитываем среднее квадратическое отклонение:

Для каждой строки таблицы находим значение нормированного отклонения

х и ~ х | 12 г => - = - ^ 2 = 1.92

а 6.25 (дд Я первого интервала и т.д.).

В графе 8 табл. 42 записываем табличное значение функции Ди) из приложения, например, для первого интервала X = 1.92 находим "1,9" против "2" (0.0632).

Для вычисления теоретических частот, то есть ординат кривой нормального распределения, вычисляется множитель:

* = ^ = 36,5 а 6,25

Все найденные табличные значения функции / (г) умножаем на 36,5. Так, для первого интервала получаем 0,0632x36,5 = 2,31 т. Принято немногочисленные

частоты (п "<5) объединять (в нашем примере - первые два и последние два интервала).

Если крайние теоретические частоты значительно отличаются от нуля, расхождение между суммами эмпирических и теоретических частот может оказаться значительной.

График распределения эмпирических и теоретических частот (нормальная кривая) по данным рассматриваемого примера показано на рисунке 15.

Рассмотрим пример определения частот нормального распределения для случая, когда в крайних интервалах отсутствует частота (табл. 43). Здесь эмпирическая

X - нормированное отклонение, (в) а - среднее квадратическое отклонение.

частота первого интервала равна нулю. Полученная сумма неуточненных частот не равна сумме их эмпирических значений (56 * 57). В этом случае рассчитывается теоретическая частота для умывания полученных значений центра интервала, нормированного отклонения и его функции.

В таблице 43 эти величины обведено прямоугольником. При построении графика нормальной кривой в таких случаях теоретическую кривую продолжают. В рассматриваемом случае нормальная кривая будет продолжена в сторону отрицательных отклонений от средней, поскольку первая не уточнена частота равна 5. Рассчитана теоретическая частота (уточненная) для первого интервала будет равен единице. По сумме уточнены частоты совпадают с эмпирическими

Таблица 42

Расчетные величины

Статистические параметры

Интервал,

Количество единиц,

х) 2

нормированное отделения,

теоретическая

частота нормального ряда распределения,

/ 0) х - а

>>

Тысяча шестьсот пятьдесят четыре

а = 6,25

^ i = 36,5 а

Таблица 43

Расчет частот нормального распределения (выравнивание эмпирических частот по нормальному закону)

Количество единиц,

Расчетные величины

Статистические параметры

Интервал (и-2)

Срединное значение (центр) интервала,

(je, -xf

^ x t -x) 1 n и

нормированное отклонение

x s - х

t = x --L

табличное значение функции, f (t)

теоретическая

частота нормального ряда распределения

уточненное значение теоретической частоты,

ш

-

-

-

-

-

о = 2,41

Рис. 15. Эмпирический распределение (1) и нормальная кривая (2)

Кривую нормального распределения по исследуемой совокупности можно построить и другим способом (в отличие, от рассмотренного выше). Так, если необходимо иметь приближенную представление о соответствии фактического распределения нормальному, вычисления осуществляют следующим последовательности. Определяют максимальную ординату, которая соответствует среднему размеру признаки), затем, вычислив среднее квадратическое отклонение, рассчитывают координаты точек кривой нормального распределения по схеме, изложенной в таблицах 42 и 43. Так, по исходным и расчетным данным таблицы 43 должны среднюю ~ = 26 Эта величина средней совпадает с центром четвертого интервала (25-27). Итак, частота этого интервала "20" может быть принята (при построении графика) максимальной ординату). Имея исчисленную дисперсию (в = 2,41 см. Табл. 43), рассчитываем значения координат всех необходимых точек кривой нормального распределения (табл. 44, 45). По полученным координатам чертим нормальную кривую (рис. 16), приняв максимальной ординату частоту четвертого интервала.

Согласованность эмпирического распределения с нормальным может быть установлена также путем упрощенных расчетов. Так, если отношение показателя степени асимметрии (^) к своей середнеквадраты-ческой ошибки ш а "или отношение показателя эксцесса (Е х) к своей среднеквадратического ошибки т & превышает по абсолютной величине число« 3 », делается вывод о несоответствии эмпирического распределения характера нормального распределения (то есть,

А ц Е х

если А> 3 или ш е "> 3).

Есть и другие, нетрудоемкие приемы установления "нормальности" распределения: а) сравнение средней арифметической с модой и медианой; б) использование цифр Вестергард; в) применение графического образа с помощью полулогарифмическая сетки Турбина; г) вычисление специальных критериев согласования и др.

Таблица 44

Координаты 7 точек кривой нормального распределения

Таблица 45

Вычисление координат точек кривой нормального распределения

x - 1,5 (7 =

х - а = 23,6

х - 0,5 (7 = = 24,8

х + 0,5ст = 27,2

х + а = 28,4

X + 1,5 (7 =

Рис.16. Кривая нормального распределения, построенная по семи точках

На практике при исследовании совокупности на предмет согласования ее распределения с нормальным часто пользуются "правилом 3сг".

Математически доказано вероятность того, что отклонение от средней по абсолютной величине будет меньше тройного среднего квадратичного отклонения, равно 0,9973, то есть, вероятность того, что абсолютная величина отклонения превышает тройное среднее квадратическое отклонение, равна 0,0027 или очень мала. Исходя из принципа невозможности маловероятных событий, можно считать практически невозможным "случай превышения" 3 ст. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания (средней) не превышает тройного среднего квадратичного отклонения.

В практических расчетах действуют таким образом. Если при неизвестном характере распределения исследуемой случайной величины рассчитанное значение отклонения от средней окажется меньше значения 3 СТ, то есть основания полагать, что исследуемая признак распределена нормально. Если же указанный параметр превысит числовое значение 3 СТ, можно считать, что распределение исследуемой величины не согласуется с нормальным распределением.

Вычисления теоретических частот для исследуемого эмпирического ряда распределения принято называть выравниванием эмпирических кривых по нормальному (или любом другом) закона распределения. Этот процесс имеет важное как теоретическое, так практическое значение. Выравнивание эмпирических данных раскрывает закономерность в их распределении, которая может быть завуалирована случайной формой своего проявления. Установленную таким образом закономерность можно использовать для решения ряда практических задач.

С распределением, близким к нормальному, исследователь встречается в различных сферах науки и областях практической деятельности человека. В экономике такого рода распределения встречаются реже, чем, скажем, в технике или биологии. Обусловлено это самой природой социально-экономических явлений, которые характеризуются большой сложностью взаимосвязанных и взаимосвязанных факторов, а также наличием ряда условий, ограничивающих свободную "игру" случаев. Но экономист должен обращаться к нормальному распределению, анализируя строение эмпирических распределений, как к некоторому эталону. Такое сравнение позволяет выяснить характер тех внутренних условий, которые определяют данную фигуру распределения.

Проникновение сферы статистических исследований в область социально-экономических явлений позволило раскрыть существование большого количества различного типа кривых распределения. Однако не надо считать, что теоретическая концепция кривой нормального распределения вообще мало пригодна в статистико-математическом анализе такого типа явлений. Она может быть не всегда приемлема в анализе конкретного статистического распределения, но в области теории и практики выборочного метода исследования имеет первостепенное значение.

Назовем основные аспекты применения нормального распределения в статистико-математическом анализе.

1. Для определения вероятности конкретного значения признака. Это необходимо при проверке гипотез о соответствии того или иного эмпирического распределения нормальному.

2. При оценке ряда параметров, например, средних, методом максимального правдоподобия. Суть его заключается в определении такого закона, которому подчиняется совокупность. Определяется и оценка, которая дает максимальные значения. Лучшее приближение к параметрам генеральной совокупности дает отношение:

у = - 2 = е 2

3. Для определения вероятности выборочных средних относительно генеральных средних.

4. При определении доверительного интервала, в котором находится приближенное значение характеристик генеральной совокупности.

Определение 1

Случайная величина $X$ имеет нормальное распределение (распределение Гаусса), если плотность её распределения определяется формулой:

\[\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}\]

Здесь $aϵR$ -- математическое ожидание, а $\sigma >0$ -- среднее квадратическое отклонение.

Плотность нормального распределения.

Покажем, что эта функция действительно является плотностью распределения. Для этого проверим следующее условие:

Рассмотрим несобственный интеграл $\int\limits^{+\infty }_{-\infty }{\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}dx}$.

Сделаем замену: $\frac{x-a}{\sigma }=t,\ x=\sigma t+a,\ dx=\sigma dt$.

Так как $f\left(t\right)=e^{\frac{-t^2}{2}}$ четная функция, то

Равенство выполняется, значит, функция $\varphi \left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(x-a)}^2}{2{\sigma }^2}}$ действительно является плотностью распределения некоторой случайной величины.

Рассмотрим некоторые простейшие свойства функции плотности вероятности нормального распределения $\varphi \left(x\right)$:

  1. График функции плотности вероятности нормального распределения симметричен относительно прямой $x=a$.
  2. Функция $\varphi \left(x\right)$ достигает максимума при $x=a$, при этом $\varphi \left(a\right)=\frac{1}{\sqrt{2\pi }\sigma }e^{\frac{-{(a-a)}^2}{2{\sigma }^2}}=\frac{1}{\sqrt{2\pi }\sigma }$
  3. Функция $\varphi \left(x\right)$ убывает, при $x>a$, и возрастает, при $x
  4. Функция $\varphi \left(x\right)$ имеет точки перегиба при $x=a+\sigma $ и $x=a-\sigma $.
  5. Функция $\varphi \left(x\right)$ асимптотически приближается к оси $Ox$ при $x\to \pm \infty $.
  6. Схематический график выглядит следующим образом (рис. 1).

Рисунок 1. Рис. 1. График плотности нормального распределения

Заметим, что, если $a=0$, то график функции симметричен относительно оси $Oy$. Следовательно, функция $\varphi \left(x\right)$ четна.

Функция нормального распределения вероятности.

Для нахождения функции распределения вероятности при нормальном распределении воспользуемся следующей формулой:

Следовательно,

Определение 2

Функция $F(x)$ называется стандартным нормальным распределением, если $a=0,\ \sigma =1$, то есть:

Здесь $Ф\left(x\right)=\frac{1}{\sqrt{2\pi }}\int\limits^x_0{e^{\frac{-t^2}{2}}dt}$ - функция Лапласса.

Определение 3

Функция $Ф\left(x\right)=\frac{1}{\sqrt{2\pi }}\int\limits^x_0{e^{\frac{-t^2}{2}}dt}$ называется интегралом вероятности.

Числовые характеристики нормального распределения.

Математическое ожидание: $M\left(X\right)=a$.

Дисперсия : $D\left(X\right)={\sigma }^2$.

Среднее квадратическое распределение: $\sigma \left(X\right)=\sigma $.

Пример 1

Пример решения задачи на понятие нормального распределения.

Задача 1 : Длина пути $X$ представляет собой случайную непрерывную величину. $X$ распределена по нормальному закону распределения среднее значение которого равно $4$ километра, а среднее квадратическое отклонение равно $100$ метров.

  1. Найти функцию плотности распределения $X$.
  2. Построить схематически график плотности распределения.
  3. Найти функцию распределения случайной величины $X$.
  4. Найти дисперсию.
  1. Для начала представим все величины в одном измерении: 100м=0,1км

Из определения 1, получим:

\[\varphi \left(x\right)=\frac{1}{0,1\sqrt{2\pi }}e^{\frac{-{(x-4)}^2}{0,02}}\]

(так как $a=4\ км,\ \sigma =0,1\ км)$

  1. Используя свойства функции плотности распределения, имеем, что график функции $\varphi \left(x\right)$ симметричен относительно прямой $x=4$.

Максимум функция достигает в точке $\left(a,\frac{1}{\sqrt{2\pi }\sigma }\right)=(4,\ \frac{1}{0,1\sqrt{2\pi }})$

Схематический график имеет вид:

Рисунок 2.

  1. По определению функции распределения $F\left(x\right)=\frac{1}{\sqrt{2\pi }\sigma }\int\limits^x_{-\infty }{e^{\frac{-{(t-a)}^2}{2{\sigma }^2}}dt}$, имеем:
\
  1. $D\left(X\right)={\sigma }^2=0,01$.
Файл примера

Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения .

Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества. Важность значения Нормального распределения (англ. Normal distribution ) во многих областях науки вытекает из теории вероятностей.

Определение : Случайная величина x распределена по нормальному закону , если она имеет :

Нормальное распределение зависит от двух параметров: μ (мю) - является , и σ ( сигма) - является (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения , а σ - разброс относительно центра (среднего).

Примечание : О влиянии параметров μ и σ на форму распределения изложено в статье про , а в файле примера на листе Влияние параметров можно с помощью понаблюдать за изменением формы кривой.

Нормальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Нормального распределения имеется функция НОРМ.РАСП() , английское название - NORM.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина X, распределенная по нормальному закону , примет значение меньше или равное x). Вычисления в последнем случае производятся по следующей формуле:

Вышеуказанное распределение имеет обозначение N (μ; σ). Так же часто используют обозначение через N (μ; σ 2).

Примечание : До MS EXCEL 2010 в EXCEL была только функция НОРМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности. НОРМРАСП() оставлена в MS EXCEL 2010 для совместимости.

Стандартное нормальное распределение

Стандартным нормальным распределением называется нормальное распределение с μ=0 и σ=1. Вышеуказанное распределение имеет обозначение N (0;1).

Примечание : В литературе для случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение z.

Любое нормальное распределение можно преобразовать в стандартное через замену переменной z =( x -μ)/σ . Этот процесс преобразования называется стандартизацией .

Примечание : В MS EXCEL имеется функция НОРМАЛИЗАЦИЯ() , которая выполняет вышеуказанное преобразование. Хотя в MS EXCEL это преобразование называется почему-то нормализацией . Формулы =(x-μ)/σ и =НОРМАЛИЗАЦИЯ(х;μ;σ) вернут одинаковый результат.

В MS EXCEL 2010 для имеется специальная функция НОРМ.СТ.РАСП() и ее устаревший вариант НОРМСТРАСП() , выполняющий аналогичные вычисления.

Продемонстрируем, как в MS EXCEL осуществляется процесс стандартизации нормального распределения N (1,5; 2).

Для этого вычислим вероятность, что случайная величина, распределенная по нормальному закону N(1,5; 2) , меньше или равна 2,5. Формула выглядит так: =НОРМ.РАСП(2,5; 1,5; 2; ИСТИНА) =0,691462. Сделав замену переменной z =(2,5-1,5)/2=0,5 , запишем формулу для вычисления Стандартного нормального распределения: =НОРМ.СТ.РАСП(0,5; ИСТИНА) =0,691462.

Естественно, обе формулы дают одинаковые результаты (см. файл примера лист Пример ).

Обратите внимание, что стандартизация относится только к (аргумент интегральная равен ИСТИНА), а не к плотности вероятности .

Примечание : В литературе для функции, вычисляющей вероятности случайной величины, распределенной по стандартному нормальному закону, закреплено специальное обозначение Ф(z). В MS EXCEL эта функция вычисляется по формуле =НОРМ.СТ.РАСП(z;ИСТИНА) . Вычисления производятся по формуле

В силу четности функции распределения f(x), а именно f(x)=f(-х), функция стандартного нормального распределения обладает свойством Ф(-x)=1-Ф(x).

Обратные функции

Функция НОРМ.СТ.РАСП(x;ИСТИНА) вычисляет вероятность P, что случайная величина Х примет значение меньше или равное х. Но часто требуется провести обратное вычисление: зная вероятность P, требуется вычислить значение х. Вычисленное значение х называется стандартного нормального распределения .

В MS EXCEL для вычисления квантилей используют функцию НОРМ.СТ.ОБР() и НОРМ.ОБР() .

Графики функций

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Как известно, около 68% значений, выбранных из совокупности, имеющей нормальное распределение , находятся в пределах 1 стандартного отклонения (σ) от μ(среднего или математического ожидания); около 95% - в пределах 2-х σ, а в пределах 3-х σ находятся уже 99% значений. Убедиться в этом для стандартного нормального распределения можно записав формулу:

= НОРМ.СТ.РАСП(1;ИСТИНА)-НОРМ.СТ.РАСП(-1;ИСТИНА)

которая вернет значение 68,2689% - именно такой процент значений находятся в пределах +/-1 стандартного отклонения от среднего (см. лист График в файле примера ).

В силу четности функции плотности стандартного нормального распределения: f ( x )= f (-х) , функция стандартного нормального распределения обладает свойством F(-x)=1-F(x). Поэтому, вышеуказанную формулу можно упростить:

= 2*НОРМ.СТ.РАСП(1;ИСТИНА)-1

Для произвольной функции нормального распределения N(μ; σ) аналогичные вычисления нужно производить по формуле:

2* НОРМ.РАСП(μ+1*σ;μ;σ;ИСТИНА)-1

Вышеуказанные расчеты вероятности требуются для .

Примечание : Для удобства написания формул в файле примера созданы для параметров распределения: μ и σ.

Генерация случайных чисел

Сгенерируем 3 массива по 100 чисел с различными μ и σ. Для этого в окне Генерация случайных чисел установим следующие значения для каждой пары параметров:

Примечание : Если установить опцию Случайное рассеивание ( Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию равной 25, можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца чисел, на основании которых можно, оценить параметры распределения, из которого была произведена выборка: μ и σ . Оценку для μ можно сделать с использованием функции СРЗНАЧ() , а для σ – с использованием функции СТАНДОТКЛОН.В() , см. .

Примечание : Для генерирования массива чисел, распределенных по нормальному закону , можно использовать формулу =НОРМ.ОБР(СЛЧИС();μ;σ) . Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Задачи

Задача1 . Компания изготавливает нейлоновые нити со средней прочностью 41 МПа и стандартным отклонением 2 МПа. Потребитель хочет приобрести нити с прочностью не менее 36 МПа. Рассчитайте вероятность, что партии нити, изготовленные компанией для потребителя, будут соответствовать требованиям или превышать их. Решение1 : = 1-НОРМ.РАСП(36;41;2;ИСТИНА)

Задача2 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Согласно техническим условиям, трубы признаются годными, если диаметр находится в пределах 20,00+/- 0,40 мм. Какая доля изготовленных труб соответствует ТУ? Решение2 : = НОРМ.РАСП(20,00+0,40;20,20;0,25;ИСТИНА)- НОРМ.РАСП(20,00-0,40;20,20;0,25) На рисунке ниже, выделена область значений диаметров, которая удовлетворяет требованиям спецификации.

Решение приведено в файле примера лист Задачи .

Задача3 . Предприятие изготавливает трубы, средний внешний диаметр которых равен 20,20 мм, а стандартное отклонение равно 0,25мм. Внешний диаметр не должен превышать определенное значение (предполагается, что нижняя граница не важна). Какую верхнюю границу в технических условиях необходимо установить, чтобы ей соответствовало 97,5% всех изготавливаемых изделий? Решение3 : = НОРМ.ОБР(0,975; 20,20; 0,25) =20,6899 или = НОРМ.СТ.ОБР(0,975)*0,25+20,2 (произведена «дестандартизация», см. выше)

Задача 4 . Нахождение параметров нормального распределения по значениям 2-х (или ). Предположим, известно, что случайная величина имеет нормальное распределение, но не известны его параметры, а только 2-я процентиля (например, 0,5- процентиль , т.е. медиана и 0,95-я процентиль ). Т.к. известна , то мы знаем , т.е. μ. Чтобы найти нужно использовать . Решение приведено в файле примера лист Задачи .

Примечание : До MS EXCEL 2010 в EXCEL были функции НОРМОБР() и НОРМСТОБР() , которые эквивалентны НОРМ.ОБР() и НОРМ.СТ.ОБР() . НОРМОБР() и НОРМСТОБР() оставлены в MS EXCEL 2010 и выше только для совместимости.

Линейные комбинации нормально распределенных случайных величин

Известно, что линейная комбинация нормально распределённых случайных величин x ( i ) с параметрами μ ( i ) и σ ( i ) также распределена нормально. Например, если случайная величина Y=x(1)+x(2), то Y будет иметь распределение с параметрами μ (1)+ μ(2) и КОРЕНЬ(σ(1)^2+ σ(2)^2). Убедимся в этом с помощью MS EXCEL.

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b . Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая . У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a );

σ 2 – дисперсия;

ну и сама переменная x , для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: (m ) и (σ 2 ). Кратко обозначается N(m, σ 2) или N(m, σ) . Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x , определяется функцией нормального распределения :

Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X < b) = Ф(b) – Ф(a)

Стандартное нормальное распределение

Нормальное распределение зависит от параметров средней и дисперсии, из-за чего плохо видны его свойства. Хорошо бы иметь некоторый эталон распределения, не зависящий от масштаба данных. И он существует. Называется стандартным нормальным распределением . На самом деле это обычное нормальное нормальное распределение, только с параметрами математического ожидания 0, а дисперсией – 1, кратко записывается N(0, 1).

Любое нормальное распределение легко превращается в стандартное путем нормирования:

где z – новая переменная, которая используется вместо x;
m – математическое ожидание;
σ – стандартное отклонение.

Для выборочных данных берутся оценки:

Среднее арифметическое и дисперсия новой переменной z теперь также равны 0 и 1 соответственно. В этом легко убедиться с помощью элементарных алгебраических преобразований.

В литературе встречается название z-оценка . Это оно самое – нормированные данные. Z-оценку можно напрямую сравнивать с теоретическими вероятностями, т.к. ее масштаб совпадает с эталоном.

Посмотрим теперь, как выглядит плотность стандартного нормального распределения (для z-оценок ). Напомню, что функция Гаусса имеет вид:

Подставим вместо (x-m)/σ букву z , а вместо σ – единицу, получим функцию плотности стандартного нормального распределения :

График плотности:

Центр, как и ожидалось, находится в точке 0. В этой же точке функция Гаусса достигает своего максимума, что соответствует принятию случайной величиной своего среднего значения (т.е. x-m=0 ). Плотность в этой точке равна 0,3989, что можно посчитать даже в уме, т.к. e 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности ;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1 , т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0 , т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен).

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z) , т.е. плотность для 1 тождественна плотности для -1 , что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z .

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения .

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z) . Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z) , то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z .

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Рисунок ниже.

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z : 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64 , для которого табличное значение составляет 0,4495 . Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64 , равна 0,4495 . При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64 , т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3 , оно равно по нашей таблице 0,4986 . Умножим на 2 и получим 0,997 . Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ(z ) или вероятности Φ(z) по нормированным данным (z ).

=НОРМ.СТ.РАСП(z;интегральная)

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ(z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z

Рассчитаем плотность и значение функции для различных z: -3, -2, -1, 0, 1, 2, 3 (их укажем в ячейке А2).

Для расчета плотности потребуется формула =НОРМ.СТ.РАСП(A2;0). На диаграмме ниже – это красная точка.

Для расчета значения функции =НОРМ.СТ.РАСП(A2;1). На диаграмме – закрашенная площадь под нормальной кривой.

В реальности чаще приходится рассчитывать вероятность того, что случайная величина не выйдет за некоторые пределы от средней (в среднеквадратичных отклонениях, соответствующих переменной z ), т.е. P(|Z|.

Определим, чему равна вероятность попадания случайной величины в пределы ±1z, ±2z и ±3z от нуля. Потребуется формула 2Ф(z)-1 , в Excel =2*НОРМ.СТ.РАСП(A2;1)-1.

На диаграмме отлично видны основные основные свойства нормального распределения, включая правило трех сигм. Функция НОРМ.СТ.РАСП – это автоматическая таблица значений функции нормального распределения в Excel.

Может стоять и обратная задача: по имеющейся вероятности P(Z найти стандартизованную величину z ,то есть квантиль стандартного нормального распределения.

Функция НОРМ.СТ.ОБР

НОРМ.СТ.ОБР рассчитывает обратное значение функции стандартного нормального распределения. Синтаксис состоит из одного параметра:

=НОРМ.СТ.ОБР(вероятность)

вероятность – это вероятность.

Данная формула используется так же часто, как и предыдущая, ведь по тем же таблицам искать приходится не только вероятности, но и квантили.

Например, при расчете доверительных интервалов задается доверительная вероятность, по которой нужно рассчитать величину z .

Учитывая то, что доверительный интервал состоит из верхней и нижней границы и то, что нормальное распределение симметрично относительно нуля, достаточно получить верхнюю границу (положительное отклонение). Нижняя граница берется с отрицательным знаком. Обозначим доверительную вероятность как γ (гамма), тогда верхняя граница доверительного интервала рассчитывается по следующей формуле.

Рассчитаем в Excel значения z (что соответствует отклонению от средней в сигмах) для нескольких вероятностей, включая те, которые наизусть знает любой статистик: 90%, 95% и 99%. В ячейке B2 укажем формулу: =НОРМ.СТ.ОБР((1+A2)/2). Меняя значение переменной (вероятности в ячейке А2) получим различные границы интервалов.

Доверительный интервал для 95% равен 1,96, то есть почти 2 среднеквадратичных отклонения. Отсюда легко даже в уме оценить возможный разброс нормальной случайной величины. В общем, доверительным вероятностям 90%, 95% и 99% соответствуют доверительные интервалы ±1,64, ±1,96 и ±2,58 σ.

В целом функции НОРМ.СТ.РАСП и НОРМ.СТ.ОБР позволяют произвести любой расчет, связанный с нормальным распределением. Но, чтобы облегчить и уменьшить количество действий, в Excel есть несколько других функций. Например, для расчета доверительных интервалов средней можно использовать ДОВЕРИТ.НОРМ. Для проверки о средней арифметической есть формула Z.ТЕСТ.

Рассмотрим еще пару полезных формул с примерами.

Функция НОРМ.РАСП

Функция НОРМ.РАСП отличается от НОРМ.СТ.РАСП лишь тем, что ее используют для обработки данных любого масштаба, а не только нормированных. Параметры нормального распределения указываются в синтаксисе.

=НОРМ.РАСП(x;среднее;стандартное_откл;интегральная)

среднее – математическое ожидание, используемое в качестве первого параметра модели нормального распределения

стандартное_откл – среднеквадратичное отклонение – второй параметр модели

интегральная – если 0, то рассчитывается плотность, если 1 – то значение функции, т.е. P(X

Например, плотность для значения 15, которое извлекли из нормальной выборки с матожиданием 10, стандартным отклонением 3, рассчитывается так:

Если последний параметр поставить 1, то получим вероятность того, что нормальная случайная величина окажется меньше 15 при заданных параметрах распределения. Таким образом, вероятности можно рассчитывать напрямую по исходным данным.

Функция НОРМ.ОБР

Это квантиль нормального распределения, т.е. значение обратной функции. Синтаксис следующий.

=НОРМ.ОБР(вероятность;среднее;стандартное_откл)

вероятность – вероятность

среднее – матожидание

стандартное_откл – среднеквадратичное отклонение

Назначение то же, что и у НОРМ.СТ.ОБР , только функция работает с данными любого масштаба.

Пример показан в ролике в конце статьи.

Моделирование нормального распределения

Для некоторых задач требуется генерация нормальных случайных чисел. Готовой функции для этого нет. Однако В Excel есть две функции, которые возвращают случайные числа: СЛУЧМЕЖДУ и СЛЧИС. Первая выдает случайные равномерно распределенные целые числа в указанных пределах. Вторая функция генерирует равномерно распределенные случайные числа между 0 и 1. Чтобы сделать искусственную выборку с любым заданным распределением, нужна функция СЛЧИС .

Допустим, для проведения эксперимента необходимо получить выборку из нормально распределенной генеральной совокупности с матожиданием 10 и стандартным отклонением 3. Для одного случайного значения напишем формулу в Excel.

НОРМ.ОБР(СЛЧИС();10;3)

Протянем ее на необходимое количество ячеек и нормальная выборка готова.

Для моделирования стандартизованных данных следует воспользоваться НОРМ.СТ.ОБР.

Процесс преобразования равномерных чисел в нормальные можно показать на следующей диаграмме. От равномерных вероятностей, которые генерируются формулой СЛЧИС, проведены горизонтальные линии до графика функции нормального распределения. Затем от точек пересечения вероятностей с графиком опущены проекции на горизонтальную ось.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий