Дыхательный коэффициент его значение величина. Коэффициент дыхательный. Источники энергии и пути ее превращения в организме

(например, в листьях и побегах суккулентных растений) и т. д. В зависимости от преимущественного использования тех или иных веществ в процессе дыхания величина дыхательного коэффициента будет изменяться. Когда дыхательным материалом является гексоза, то при полном ее окислении величина, дыхательного коэффициента равняется единице  

Увеличение влажности резко усиливает жизнедеятельность и в первую очередь дыхание зерна, сопровождающееся потребностью в кислороде. Вместе с тем запас кислорода в воде очень быстро истощается, например прн замачивании ячменя - за 60-80 мпн, и обеспечение зерна кислородом затруднено . Проникновению кислорода в зерно через зародыш (в начале замачивания) препятствует щиток, а через оболочки впоследствии - большое количество воды в тканях. Диффузия кислорода в воде примерное 10 ООО раз медленнее, чем в газе, кроме того, растворимость его в воде в 40 раз меньше, чем диоксида углерода . Недостаток кислорода в процессе замачивания подтверждается и величиной дыхательного коэффициента, который выше единицы (около 1,07), а через 8 ч от начала замочки равен 1,38, т. е. наблюдается уже анаэробное дыхание. 

Фактически же из рис. 60 можно увидеть, что дыхательный коэффициент окисления чайного таннина составляет 0,75, т. е. величину, почти вдвое превышающую теоретически рассчитанную. Интересно отметить, что, по данным Шуберт (1959), дыхательный коэффициент листьев чая в конце составляет 0,7-0,75 факт, свидетельствующий о том, что основным субстратом окислительных процессов в это время служит комплекс катехинов. 

Установив величину дыхательного коэффициента прямым определением , делают приближенное вычисление количества превратившихся в организме жиров и углеводов, приняв, что на долю белков приходится обычно около 15% энергии. Для этого можно руководствоваться табл. 16. 

Отравление организма сопровождается значительным нарушением обмена веществ. Усиливаются гидролитические процессы , уменьшается содержание в организме гликогена, жиров и липоидов, белковых веществ . Усиление транспирации приводит к значительной потере организмом воды . Уменьшается вес насекомых. Соответственно нарушениям обмена веществ уменьшается дыхательный коэффициент , достигая минимальной величины 0,4-0,5. 

Во всяком случае, при фотодинамических процессах потребляется кислород , но это не приводит к образованию СО, так как дыхательный коэффициент (т. е. отношение количества образовавшегося СО2 к количеству поглощенного О2) падает от величины, приблизительно равной единице, до 0,05. 

Величина дыхательного коэффициента 

Снижение величины дыхательного коэффициента

Интересен вопрос о влиянии света на величину дыхательного коэффициента. Выше уже отмечалось, что выделение СОг листьями на свету у всех видов исследованных растений происходит медленнее, чем у тех же листьев в темноте. Объясняется это тем, что та или иная часть СОг дыхания используется листьями в ходе процессов фотосинтеза. По этой причине ДК листьев на свету всегда ниже, чем тех же листьев в темноте. В особенности отчетливо эти закономерности наблюдаются на суккулентах, в тканях которых, как известно, накапливаются большие количества органических кислот. 

Изменения температуры могут резко сказываться на интенсивности поглощения тканями растения кислорода даже и в том случае, если содержание последнего в атмосфере остается неизменным. Наряду с этим температура оказывает мощное влияние не только на общую интенсивность дыхания, но и на соотно-щение между отдельными звеньями этого сложного комплекса процессов. В частности, изменения температуры нередко сильно сказываются на соотнощении между поглощением кислорода и выделением СОг, т. е. на величине дыхательного коэффициента. 

Врачи и биологи установили, что при окислении в организме углеводов до воды и углекислого гмза на одну затраченную молекулу кислорода выделяется одна молекула СО2. Таким образом , отношение выделенного СО2 к поглощенному О2 (величина дыхательного коэффициента) равна единице. В случае окисления жиров дыхательный коэффициент равен примерно 0,7. Следовательно, определяя величину дыхательного коэффициента, можно судить, какие вещества преимущественно сгорают в организме. Экспериментально установлено, что при кратковременных, но интенсивных энергия получается за счет окисления углеводов, а при длительных - преимущественно за счет сгорания жиров. Полагают, что переключение организма на окисление жиров связано с истощением резерва углеводов, что обычно наблюдается через 5- 20 мин после начала интенсивной мышечной работы. 

Вместо 100 мл начального объема газа при изменившемси давлении в конце опыта имеем 97,68 мл, а 1 мл при этих условних соответствует 0,9768 мл. Последний цифра и ивляется поправочным множителем (К) к первому отсчету объема газа в эвдиометре. Подставляем полученные величины в юрмулу и определяем дыхательный коэффициент  

Рис. 61 показывает, что в случае индивидуальных катехинов выделение углекислоты наблюдается лишь через 30 мин. При совместном же окислении этих катехинов выделение углекислоты начинается сразу же и в 3 раза превосходит величину, которую можно рассчитать на основании опытов с отдельными катехинами. Одновременно у смеси катехинов наблюдается и прирост ио-глощения кислорода, но в значительно меньших размерах (-1-45%), чем увеличение выделения углекислоты (- -300%). В результате дыхательный коэффициент возрастает более, чем вдвое. 

Макенн и Демусси определяли поправку на дыхание, экспериментируя в темноте Вильштеттер и Штоль доводили поправку на дыхание до ничтожно малой величины , работая на очень сильном свету с высокими концентрациями двуокиси углерода, т. е. в таких условиях , при которых фотосинтез был в 20-30 раз интенсивнее дыхания . В табл. 5 приведены данные из этих работ, а также из некоторых новых исследований, где материалом служили иные типы растений (низшие водоросли). Данные табл. 5 показывают удивительную устойчивость фотосинтетического коэффициента он не зависит от интенсивности света , длительности освещения, температуры, а кислорода и двуокиси углерода. Преобладают значения несколько выше единицы, и отклонения вряд ли превышают предел экспериментальной ошибки . Табл. 5 показывает также, что дыхательный коэффициент 

Для соединений, состоящих только из атомов С, О и Н (без перекисных связей), подходящей мерой уровня восстановленности является дыхательный коэффициент (выраженный в виде отношения АСОа/ - ДОд) или еще более удобна обратная ему величина- уровень восстановленности L. Показатель L равен числу молекул кислорода, необходимого для полного сжигания молекулы. 

К ресинтезу углеводов, или это чисто окислительный процесс . Если признать правильность теории, доказывающей, что все восстановительные ступени фотосинтеза между комплексами СО) и Н СО должны быть фотохимическими (см. фиг. 20), то темновое превращение яблочной или лимонной кислоты в углеводы кажется невозможным. Уровни восстановленности этих кислот меньше единицы, т. е. они не могут превращаться в углеводы без доступа энергии. Но мы уже рассматривали в главе VH схемы реакций , в которых лишь первая ступень восстановления двуокиси углерода использует световую энергию , а энергия, нужная для последующих ступеней восстановления , доставляется дисмутациями. Таким образом , яблочная и лимонная кислоты могли бы восстанавливаться до углеводов и без помощи света, если часть их будет одновременно окисляться. Подобная энзиматическая дисмутация считается возможной она поддерживается фактом, что дыхательный коэффициент суккулентов во время темнового разрушения кислот часто значительно выше чем 1,33, т. е. величины,. соответствующей сжиганию яблочной кислоты 1212J. В случае чистой дисмутации этот коэффициент должен обратиться в бесконечность. В связи с этими рассуждениями можно привести и другие экспериментальные данные. На стр. 271 указывалось, что в опытах по образованию водорослями крахмала в темноте могли использоваться, как правило, только вещества с i >-1 однако оказалось, что существуют некоторые исключения. 

Если листья толстянковых, после того как в них произошло максимальное накопление кислот , оставить в темноте, то их кислотность начинает падать в результате потребления яблочной кислоты с выделением СО2. Это выделение СО2 накладывается на дыхательный обмен , приводя к увеличению дыхательного коэффициента , так что иногда он начинает намного превышать величину 1,33 (это максимальная величина , ожидаемая для полного окисления малата до СО2 и воды). В некоторых, весьма немногочисленных опытах имеются указания на то, что в процессе темнового снижения кислотности происходит некоторое накопление углеводов эти данные служат подтверждением предположения, высказанного много лет назад Беннетом-Кларком согласно этому предположению, в тех случаях, когда наблюдаются очень высокие величины дыхательного коэффициента, происходит потребление части малата в анаболических реакциях . Однако, когда листья, содержащие меченый малат (фиксация С в темноте), подвергали воздействиям , способствующим уменьшению кислотности (к таким воздействиям относится, в частности, повышение температуры), в углеводах листьев обнаруживалось не больше нескольких процентов С. Таким образом , в настоящее время приходится признать , что предположение, согласно которому малат, образовавшийся в процессе ОКТ, превращается в темноте в углеводы в количестве, поддающемся учету, не имеет прямых доказательств если это и возможно, то лишь в исключительных обстоятельствах. 

Как уже обсуждалось в предыдущем разделе, растения, у которых протекает ОКТ, обладают выраженной способностью к фиксации СО2. Первым накапливающимся продуктом является малат однако возможно, что изолимонная и лимонная кислоты , накапливающиеся в заметных количествах в листьях таких растений при их развитии, образуются из малата посредством реакций цикла таким образом , в них находится часть углерода, включившегося в листья при темновой фиксации СО2. Такую фиксацию можно легко наблюдать у растений типа толстянковых, так как накопление малата у них происходит быстро и обратимо. В других органах , например в развивающихся листьях, побегах и плодах, кислоты накапливаются относительно медленно и для практических целей необратимо. В этих органах фиксацию СО2, если она происходит, приходится выявлять в таких условиях , когда количество фиксированной СО2 незначительно по сравнению с количеством СО2, выделяющейся в клеточных процессах окисления. Таким образом , в конечном счете можно было бы наблюдать некоторое, возможно, совсем незначительное, понижение величины дыхательного коэффициента по сравнению с той величиной, которую следовало бы ожидать для процессов окисления в органе. Имеются сообщения, что в нескольких случаях наблюдались низкие величины дыхательного коэффициента во время накопления кислот, причем на более ноздних стадиях, когда происходит суммарное расходование кислот, эти величины повышались . Эти наблюдения 

Хьюм и др. показали также, что окислительная активность митохондрий, выделенных из яблок (особенно из ткапи кожицы), повышалась на протяжении климактерического периода , причем это повышение начиналось за несколько дней до того, как усиливалось выделение СО2 в целом плоде. (Митохондриальную активность измеряли по поглощению кислорода и выделению углекислоты при добавлении сукцината и малата.) Это наблюдение наряду с тем фактом, что во время климактерического периода несколько возрастало содержание белка, привело Хьюма и его сотрудников к предположению, что в этот период происходит синтез ферментов (пируватдекарбоксилазы и малик-фермента), причем энергия, необходимая для этого синтеза , поступает за счет повышенной митохондриальной активности. Исследователи предположили, далее, что причиной конечного падения интенсивности дыхания до величины, которая остается затем почти постоянной (пока не наступит полный распад ткани), является недостаток кислотного субстрата , необходимого как для цикла Кребса , так и для малик-фермента . Нил и Хьюм показали, что дыхательный коэффициент у дисков из сильно перезревших 

Эти длппыс получены Б экспсримбнтзх с кйрпом и серебряным карасем - представителями

(ДК) это отношение объема выделенного в процессе дыхания углекислого газа к объему поглощенного кислорода.

Величина дыхательного коэффициента растений

Величина ДК указывает как на харак­тер окисляемого в процессе дыхания материала, так и на тип дыхания; она может быть равна единице, больше или меньше ее. При окислении углеводов объемы обмениваемых газов угле­кислоты и кислорода равны и отношение С0 2: 0 2 равно единице. В данном случае потребляемый при дыхании кислород идет только на окисление углерода до углекислоты, потому что соот­ношение водорода и кислорода в молекуле глюкозы таково, что для окисления водорода до воды кислорода достаточно в самой молекуле сахара. При окислении ряда органических кислот дыхательный коэффициент растений больше еди­ницы. Так, щавелевая кислота - соединение, более богатое кис­лородом, чем углеводы. Кислорода, имеющегося в молекуле, не только достаточно для окисления водорода до воды, но часть его остается и для окисления углерода; поэтому для полного окисления двух молекул щавелевой кислоты достаточно одной молекулы кислорода: 2С 2 Н 2 О 4 + О 2 → 4СО 2 + 2Н 2 О, ДК (4СО 2: О 2) в этом случае равен 4. В тех случаях, когда растение дышит за счет белков или жи­ров, в молекуле которых много водорода и углерода и мало кис­лорода, ДК меньше единицы, так как для окисления всего углерода и водорода, находящегося в этих соединениях, необхо­димо поглотить большое количество кислорода. При окислении стеариновой кислоты реакция окисления пойдет следующим образом: С 18 Н 26 О 2 + 26О 2 → 18СО 2 + 18Н 2 О. ДК (18СО 2: 26О 2) равен 0,69. Таким образом, в случае окисления углеводов ДК равен еди­нице, органических кислот - больше единицы, белков и жиров - меньше единицы.

Тепловой эффект при дыхании растений

Тепловой эффект будет иметь значение, обратное величине ДК: максимальный тепловой эффект будет при окислении жиров, потому что они наиболее восстановленные соединения. Зависимость величины ДК от характера дыхательного мате­риала наблюдается только в том случае, когда в окружающей среде и тканях растения достаточно кислорода. Однако при окислении одного и того же дыхательного материала, но при недостатке кислорода в окружающей среде и тканях растений величины ДК также могут изменяться. Если кислорода мало, то при окисление идет не до конца и кроме углекислого газа и воды образуются органические кислоты, которые более окислены, чем углеводы. В этом случае ДК будет меньше еди­ницы, так как часть поглощенного кислорода останется в моле­кулах образованных органических кислот, углекислоты же вы­делится меньше. Меньше выделится и энергии, так как часть ее сохранится в органических кислотах.

Дыхательный коэффициент составляет 18,10:24,70 = 0,73.[ ...]

Дыхательный коэффициент при нормальном созревании плодов не остается постоянным. В предклимакте-рической стадии он равен примерно 1 и по мере созревания достигает значений 1,2... 1,5. При отклонениях на ±0,25 от единицы в плодах еще не наблюдаются аномалии в обмене веществ, и только при больших отклонениях можно предполагать физиологические расстройства. Интенсивность дыхания отдельных слоев тканей какого-либо плода неодинакова. В соответствии с большей активностью ферментов в кожице в ней отмечается во много раз большая интенсивность дыхания, чем у паренхимной ткани (Хулме и Родс, 1939). При снижении содержания кислорода и увеличении концентрации двуокиси углерода в паренхимных клетках по мере удаления от кожицы к сердцевине плода интенсивность дыхания падает.[ ...]

Прибор для определения дыхательного коэффициента, пинцеты, полоски фильтровальной бумаги, песочные часы па 2 мин, стеклянные чашки, пипетки, стеклянные палочки, конические колбы на 250 мл.[ ...]

Прибор для определения дыхательного коэффициента состоит из большой пробирки с плотно пригнанной каучуковой пробкой, в которую вставлена изогнутая под прямым углом измерительная трубка со шкалой из миллиметровой бумаги.[ ...]

Потребление кислорода и коэффициент его утилизации были постоянными при снижении р02 до 60 и 20% исходного (в зависимости от скорости тока). При концентрации кислорода, слегка превышающей критическую, длительное время поддерживался максимальный объем вентиляции (в течение нескольких часов). Объем вентиляции возрастал при этом в 5,5 раза, но в отличие от карпов он снижался начиная с 22% уровня насыщения воды кислородом. Авторы считают , что снижение объема вентиляции у рыб при экстремальной гипоксии - следствие кислородной недостаточности дыхательной мускулатуры. Соотношения частоты дыхания и сердцебиений были равны 1,4 в норме и 4,2 при дефиците кислорода.[ ...]

Вводные пояснения. Преимущества метода: высокая чувствительность, что позволяет работать с малыми навесками опытного материала; возможность наблюдать за динамикой газообмена и одновременно учитывать газообмен 02 и С02, что позволяет установить дыхательный коэффициент.[ ...]

Поэтому значение pH в окситеике снижается почти до 6,0, в то время как в аэротенке рН>7Д При максимальной нагрузке потребляемая мощность для окситенка, включающая мощность оборудования для получения кислорода 1,3 м3/ (л.с.-ч) и мощность аэратора (рис. 26.9), должна быть меньше, чем мощность аэратора для аэротенка. Это объясняется высокой концентрацией кислорода (выше 60%) ка всех ступенях окситенка.[ ...]

Динамика выделения углекислого газа (С?со2), поглощения кислорода ([ ...]

Морские и пресноводные рыбы в данных условиях опыта имели примерно одинаковый дыхательный коэффициент (ДК). Недостатком этих данных является то, что автор взял для сравнения золотую рыбку, которая вообще мало потребляет кислорода и вряд ли может служить эталоном сравнения.[ ...]

В отношении газообмена насекомых, находящихся в зимней спячке, следует сказать, что и дыхательный коэффициент при этом понижается1. Так, например, Драйер (1932) обнаружил, что у муравья Formica ulkei Emery в активном состоянии дыхательный коэффициент был равен 0,874; когда же муравьи перед зимней спячкой стали малоподвижными, дыхательный коэффициент снизился до 0,782, и в период спячки снижение достигло 0,509-0,504. У колорадского картофельного жука Leptinotarsa decemlineata Say. в период зимовки дыхательный коэффициент снижается до 0,492-0,596, тогда как в летнее время он равен 0,819- 0,822 (Ушатинская, 1957). Это объясняется тем, что в активном состоянии насекомые живут преимущественно за счет белковой и углеводной пищи, в спячке же расходуется главным образом жир, требующий для окисления меньшего количества кислорода.[ ...]

В герметичных резервуарах, рассчитанных на давление в ГП рк. д = 1962 Па (200 мм. вод. ст), при высоких коэффициентах оборачиваемости продолжительность простаивания резервуара с «мертвым» остатком до начала заполнения может быть так мала, что дыхательный клапан не успеет открыться для «выдоха». Тогда потери от «обратного.выдоха» отсутствуют.[ ...]

Для понимания биохимических процессов, протекающих в организме, большое значение имеет величина дыхательного коэффициента. Дыхательный коэффициент (ДК) - отношение выдыхаемой угольной кислоты к потребляемому кислороду.[ ...]

Для суждения о влиянии температуры на какой-либо процесс обычно оперируют величиной температурного коэффициента. Температурный коэффициент (£>ю) процесса дыхания зависит от типа растений и от градаций температуры. Так, при повышении температуры от 5 до 15°С 0 ю может возрастать до 3, тогда как повышение температуры от 30 до 40°С увеличивает интенсивность дыхания менее значительно (Фю около 1,5). Большое значение имеет фаза развития растений. По данным Б, А. Рубина, на каждой фазе развития растений для процесса дыхания наиболее благоприятны те температуры, на фоне которых обычно проходит эта фаза, Изменение оптимальных температур при дыхании растений в зависимости от фазы их развития связано с тем, что в процессе онтогенеза меняются пути дыхательного обмена. Между тем для разных ферментных систем наиболее благоприятным являются разные температуры. В этой связи интересно, что в более поздние фазы развития растений наблюдаются случаи, когда фла-виновые дегидрогеназы выступают в роли конечных оксидаз, передавая водород непосредственно кислороду воздуха.[ ...]

Все исследованные рыбы в неволе потребляют кислорода меньше, чем в природных условиях. Слабое увеличение дыхательного коэффициента у рыб, содержавшихся в аквариумах, свидетельствует об изменении качественной стороны обмена в сторону большего участия в нем углеводов и белков. Автор объясняет это худшим кислородным режимом аквариума по сравнению с естественными условиями; кроме того, в аквариуме рыбы малоподвижны.[ ...]

Для снижения выброса паров вредных веществ применяются также диски-отражатели, устанавливаемые под монтажным патрубком дыхательного клапана. При высоком коэффициенте оборачиваемости атмосферных резервуаров эффективность дисков-отражателей может достичь 20-30%.[ ...]

Донасыщение ГП может происходить после заполнения, если газовое пространство было не вполне насыщено парами. В этом случае дыхательный клапан после заполнения емкости не закрывается и сразу начинается дополнительный выдох. Такое явление встречается в резервуарах, имеющих высокий коэффициент оборачиваемости или заполняемых частично, не до предельной высоты взлива, а также в резервуарах с замедленными процессами насыщения ГП (резервуары с понтонами и заглубленные). Донасыщение ГП особенно характерно для резервуаров, впервые заполненных после зачистки и проветривания. Такой вид потерь иногда называют потерями от насыщения или донасыщения ГП.[ ...]

При известных и и0 Аcjcs можно также определять по графикам, аналогичным приведенному на рис. 14. В методиках расчета потерь приведены подобные графики для типовых резервуаров РВС, различных типов дыхательных клапанов и их количества. Величина Аc/cs означает прирост концентрации в ГП за суммарное время простоя (тп) и заполнения резервуара (тэ), т. е. т = т„ + т3; ее определяют приближенно по графикам (см. рис. 3). При использовании формулы (!9) необходимо иметь б виду, что при полном насыщении ГП ccp/cs = 1 и что время полного насыщения ГП наземных резервуаров ограничено 2-4 сутками (в зависимости от состояния погоды и других условий), а график на" рис. 3 приближенный. Поэтому, получив по формуле (19) значения ccp/cs>l, что означает наступление полного насыщения ГП ранее момента конца простоя или конца заполнения резервуара, в формулу (18) необходимо подставлять ccp/cs = 1.[ ...]

Оценим количественные связи между этими двумя потоками газов. Во-первых» отношение объема выделенного углекислого газа к объему потребленного кислорода (дыхательный коэффициент) для большинства сточных вод и активных илов меньше единицы. Во-вторых, объемные коэффициенты массопередачи для кислорода и углекислого газа близка друг к другу. В-третьих, константа фазового равновесия углекислого газа почти в 30 раз меньше кислородной. В-четвертых, углекислый газ не только присутствует в иловой смеси в растворенном состояний, но и вступает с водой в химическое взаимодействие.[ ...]

При сравнении обоих типов дыхания бросается в глаза неодинаковое отношение поглощения кислорода к выделению двуокиси углерода. Отношение СО2/О2 обозначается как дыхательный коэффициент КО.[ ...]

Если в процессе дыхания окисляются органические вещества с относительно более высоким содержанием кислорода, чем в углеводах, например органические кислоты - щавелевая, винная и их соли, то дыхательный коэффициент будет значительно больше 1. Он также будет больше 1 в том случае, когда часть кислорода, используемого для дыхания микробов, берется из углеводов; или же при дыхании тех дрожжей, у которых одновременно с аэробным дыханием происходит спиртовое брожение. Если же наряду с аэробным дыханием протекают другие процессы, при которых используется добавочный кислород, то дыхательный коэффициент будет меньше 1. Он будет меньше 1 и тогда, когда в процессе дыхания окисляются вещества с относительно небольшим содержанием кислорода, например белки, углеводороды и др. Следовательно, зная значение дыхательного коэффициента, можно определить, какие вещества окисляются в процессе дыхания.[ ...]

Наиболее общий показатель скорости окисления- интенсивность дыхания, о которой можно судить по поглощению кислорода, выделению диоксида углерода и окислению органического вещества. Другие показатели дыхательного метаболизма: величина дыхательного коэффициента, соотношение гликолитического и пенто-зофосфатного путей распада сахаров, активность окислительно-восстановительных ферментов. Об энергетической эффективности дыхания можно судить по интенсивности окислительного фосфорилирования митохондрий.[ ...]

Показанные на яблоках сорта Кокс оранж тенденции в отношении влияния концентраций кислорода и двуокиси углерода в воздухе камеры действительны для всех других сортов яблок, за исключением случаев более сильного увеличения дыхательного коэффициента при понижении температуры.[ ...]

Величина ДК зависит и от других причин. В некоторых тканях из-за затрудненного доступа кислорода наряду с аэробным происходит анаэробное дыхание, не сопровождающееся поглощением кислорода, что приводит к повышению значения ДК. Величина коэффициента обусловлена также полнотой окисления дыхательного субстрата. Если, кроме конечных продуктов, в тканях накапливаются менее окисленные соединения (органические кислоты), то ДК[ ...]

Количественные определения зависимости газообмена у рыб от температуры были проведены многими исследователями. В большинстве случаев изучение этого вопроса ограничивалось преимущественно количественной стороной дыхания - величиной дыхательного ритма, величиной потребления кислорода и затем вычислением температурных коэффициентов при разных температурах.[ ...]

Для снижения потерь в результате испарения и загрязнения воздушной среды, резервуары для бензина оснащают газовой обвязкой, соединяющей воздушные пространства резервуаров, в которых хранится продукция одной марки, а также устанавливают общий дыхательный клапан. Описанные выше «большие и малые дыхания», вентиляция газового пространства, также являются причиной загрязнения воздушной среды при хранении нефтепродуктов на сельскохозяйственных объектах, так как при коэффициенте оборачиваемости резервуарного парка 4-6 коэффициент оборачиваемости запасов топлива составляет 10-20, а это означает снижение коэффициента использования резервуаров 0,4-0,6. В целях предотвращения загрязнения атмосферы на нефтескладах предусматривают очистные устройства и бензомаслоуловители.[ ...]

Полученные к настоящему времени данные показывают, что экстремальные температуры вызывают угнетение деятельности физиологической системы, в частности транспорта газов у рыб. При этом развивается бра-дикардия, нарастает аритмия, снижаются потребление кислорода и коэффициент его утилизации. Вслед за этими изменениями работы кардиореспира-торного аппарата постепенно прекращается вентиляция жабр и в последнюю очередь перестает функционировать миокард. По-видимому, аноксия дыхательной мускулатуры и общая кислородная недостаточность одна из причин гибели рыб при перегреве. Повышение температуры приводит к ускорению утилизации кислорода и, как следствие, к падению его напряжения в дорзальной аорте, что, в свою очередь, служит сигналом для усиления вентиляции жабр .[ ...]

Перед применением модели следует провести проверку ее кинетических параметров. Проверка модели системы с чистым кислородом для очистки бытовых и промышленных сточных вод была сделана Мюллером и др. (1]. При проверке моделей для очистки бытовых сточных вод использовали дыхательный коэффициент Я.С, равный 1,0, тогда как для промышленных сточных вод он составляет 0,85 и даже 0,60. Дополнительная проверка химических взаимодействий была сделана совсем недавно при изучении сточных вод целлюлозно-бумажной фабрики (рис.26.6). Для оценки полученных данных дыхательный коэффициент был принят равным 0,90. Хотя данных о содержании аммонийного азота было не так много, была отмечена бюлее низкая потребность в нем для роста микроорганизмов, чем это традиционно наблюдалось в биологических системах.[ ...]

Для решения вопроса о сущности действия температуры на обмен веществ рыбы нужно знать не только степень увеличения или уменьшения обмена с изменением температуры, но и качественные изменения в отдельных звеньях, составляющих обмен веществ. Качественную сторону обмена до некоторой степени могут характеризовать такие коэффициенты, как дыхательный и аммиачный (отношение выделенного аммиака как конечного продукта азотистого обмена к потребленному кислороду) (рис. 89).[ ...]

Из приведенного выше уравнения (4) следует, что отношение констант для 02 и С02 равно 1,15 , т. е. использование С02-техники измерения баланса, казалось бы, позволяет проводить наблюдения при несколько более высоких значениях 2 и соответственно больших скоростях течения. Но это кажущееся преимущество исчезает, если принять, что дыхательный коэффициент меньше 1. Кроме того, как показал Таллинг 32], точность определения С02 в природных водах не может быть лучше чем ± 1 мкмоль/л (0,044 мг/л), а кислорода - ±0,3 ,мкмоль/л (0,01 мг/л). Следовательно, даже если принять дыхательный коэффициент равным 1, точность балансового метода, основанного на учете баланса кислорода, оказывается по крайней мере втрое выше, чем при определении углекислоты.[ ...]

Морфо-физиологический метод применялся в наших исследованиях с некоторыми дополнениями. Это позволило определять с достаточной точностью (±3,5%) количества поглощенного кислорода, выделенной углекислоты и дыхательный коэффициент (ДК) на целых проростках 10 -12 дневного возраста и листьях растений из полевых опытов. Принцип этой методики заключается в том, что растения помещенные в замкнутый сосуд (газовая пипетка специальной конструкции) с атмосферным воздухом, в результате дыхания изменяют состав воздуха. Таким образом, зная объем сосуда и определив процентный состав воздуха в начале и в конце опыта, нетрудно рассчитать количество поглощенного 02:и выделенной СОг растениями.[ ...]

Различные органы и ткани растения сильно различаются по условиям снабжения их кислородом. В листе кислород свободно поступает практически к каждой клетке. Сочные плоды, корнеплоды, клубни вентилируются очень плохо; они слабо проницаемы для газов, не только для кислорода, но и для углекислого газа. Естественно, в этих органах процесс дыхания сдвигается в анаэробную сторону, дыхательный коэффициент возрастает. Возрастание дыхательного коэффициента и сдвиг процесса дыхания в анаэробную сторону наблюдаются в меристематических тканях. Таким образом, разные органы характеризуются не только различной интенсивностью, но и неодинаковым качеством дыхательного процесса.[ ...]

Вопрос о веществах, используемых в процессе дыхания, издавна еаниман физиологов. Еще в работах И. П. Бородина было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы яеляются основным веществом, потребляемым при дыхании. В выяснении данного вопроса большое значение имеет определение дыхательного коэффициента. Дыхательный коэффициент - это объемное или молярное отношение СОг, выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени Ог- При нормальном доступе кислорода величина дыхательного коэффициента зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то процесс идет согласно уравнению СеН) 2О5+6О2=6СО2+6Н2О, в этом случае дыхательный коэффициент равен единице!=1. Однако, если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, дыхательный коэффициент становится больше единицы. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и дыхательный коэффициент становится меньше единицы.[ ...]

Итак, простейший процесс аэробного дыхания представляется в следующем виде. Молекулярный кислород, потребляемый в процессе дыхания, используется в основном для связывания водорода, образующегося при окислении субстрата. Водород от субстрата передается к кислороду через ряд промежуточных реакций, проходящих последовательно с участием ферментов и переносчиков. Определенное представление о характере процесса дыхания дает так называемый дыхательный коэффициент. Под этим понимают отношение объема выделившегося углекислого газа к объему кислорода, поглощенного в процессе дыхания (С02:02).[ ...]

Эффективность работы кардиореспираторного аппарата рыб, его резервные возможности, лабильность частотных и амплитудных показателей зависят от видовой принадлежности и экологических особенностей рыб. При повышении температуры на одну и ту же величину (с 5 до 20°С) частота дыхания у судака увеличилась с 25 до 50 в минуту, у щуки с 46 до 75, у язя с 63 до 112 в минуту. Потребление кислорода увеличивается параллельно с увеличением частоты, но не глубины дыхания. Наибольшее число дыхательных движений для прокачивания единицы объема воды производит подвижный язь, а наименьшее - менее активный оксифильный судак, что положительно коррелирует с интенсивностью газообмена у исследованных видов . По мнению авторов, соотношение максимального объема вентиляции и соответствующего ему коэффициента утилизации кислорода определяет максимальные энергетические возможности организма. В покое наибольшие интенсивность газообмена и объем вентиляции были у оксифильного судака, а при функциональной нагрузке (двигательная активность, гипоксия) -- у язя. При низкой температуре прирост объема вентиляции у язя в ответ на гипоксию был больше, чем при высокой, а именно: 20-кратный при 5°С и 8-кратный при 20°С. У ОггИоЬоп тюго1ер1с1оги5 при гипоксии (40% насыщения) объем воды, прокачиваемой через жабры, изменяется в меньшей степени: при 12°С увеличивается в 5 раз, а при 28°С - в 4,3 раза .[ ...]

Значительно менее полно исследованы показатели углеводного обмена при адаптивной экзогенной гипоксии, т. е. при легком и умеренном дефиците кислорода в окружающей среде. Однако имеющиеся немногочисленные экспериментальные данные показывают, что и в этом случае происходят усиленное использование гликогена в мышцах, повышение содержания молочной кислоты и сахара в крови. Как и следовало ожидать, уровень насыщения воды кислородом, при котором отмечаются эти сдвиги, неодинаков для разных видов. Например, у миноги отмечена гипергликемия при снижении содержания кислорода всего лишь на 20% от исходного и у 1 аЬео сарепвк концентрация сахара в крови оставалась постоянно низкой даже при 40% насыщения воды кислородом и только дальнейшее снижение насыщения приводило к быстрому увеличению уровня сахара в крови. Повышение сахара в крови и молочной кислоты отмечено при гипоксии у линя . Аналогичная реакция на гипоксию отмечена и у канального сомика . В первой из этих работ при 50%-ном насыщении воды кислородом у рыб выявлено повышение содержания молочной кислоты, которое продолжалось и в первый час нормоксии, т. е. после возвращения рыб в нормальные кислородные условия. Восстановление биохимических показателей к норме происходило в течение 2-6 ч, а увеличение содержания лактата и дыхательного коэффициента с 0,8 до 2,0 свидетельствовало об увеличении анаэробного гликолиза.

10.1.5. Дыхательный коэффициент

Дыхательный коэффициент, или соотношение легочного газообмена (ДК), характеризует тип использования пищевых продуктов в обмене веществ. Этот показатель определяют следующим образом:

где V CO 2 - выделение СO 2 , a O 2 - потребление O 2 . В случае окисления глюкозы количество потребляемого кислорода и количество выделяемого углекислого газа равны, так что ДК = 1. Таким образом, значение ДК, равное единице, является показателем окисления углеводов (табл. 10.1).

Таблица 10.1. Значения дыхательных коэффициентов (ДК) и энергетических эквивалентов при окислении различных пищевых веществ

Пищевые вещества ДК Энергетические эквиваленты
кДж/л О 2 ккал/л О 2
Углеводы 1,00 21,1 5,05
Жиры 0,70 19,6 4,69
Белки 0,81 18,8 4,48

Значение ДК в случае окисления жиров может иметь простое объяснение. В связи с тем что в жирных кислотах на 1 атом углерода приходится меньше атомов кислорода, чем в углеводах, их окисление характеризуется значительно более низким дыхательным коэффициентом (ДК = 0,7). В случае окисления чисто белковой пищи ДК оказывается равным 0,81 (табл. 10.1). При смешанной пище у человека дыхательный коэффициент обычно составляет 0,83-0,9. Определенному ДК соответствует определенный энергетический (калорический) эквивалент кислорода (табл. 10.2), который означает количество теплоты, высвобождающейся после потребления организмом 1 л O 2 .

Соотношение между количеством выделяемого СO 2 и потребляемого O 2 зависит как от типа пищевых веществ, так и от преобразования одних пищевых веществ в другие. В тех случаях, когда преимущественную часть рациона составляют углеводы, они могут преобразовываться в жиры. В связи с тем что жиры содержат в своем составе меньше кислорода, чем углеводы, такой процесс сопровождается высвобождением соответствующего количества кислорода. При перенасыщении углеводами количество поглощаемого в тканях кислорода снижается, а ДК увеличивается. В случае насильственного питания (гуси и свиньи) были зарегистрированы такие значения ДК, как 1,38. В периоды голодания и при сахарном диабете ДК может снижаться до величины, равной 0,6. Это связано с усилением интенсивности обмена жиров и белков наряду со снижением метаболизма глюкозы.

Важным фактором, влияющим на величину ДК, является гипервентиляция. Дополнительное количество СO 2 , выдыхаемое при гипервентиляции, поступает из тех обширных запасов СО 2 , которые

Таблица 10.2. Энергетический эквивалент 1 л O 2 при разных дыхательных коэффициентах

Дыхательный коэффициент Энергетический эквивалент
кДж ккал
0,707 19,62 4,686
0,75 19,84 4,739
0,80 20,10 4,801
0,85 20,36 4,862
0,90 20,62 4,924
0,95 20,87 4,985
1,00 21,13 5,047

В практике при приближенных расчетах среднее значение энергетического эквивалента принимают равным 20,2 кДж/л O 2 , что соответствует величине метаболического ДК = 0,82. Диапазон колебаний энергетического эквивалента в зависимости от значения ДК, как правило, невелик. Поэтому погрешность, связанная с использованием среднего значения энергетического эквивалента, не превышает ± 4 %.

Дыхательным коэффициентом называется отношение объема выделенного угле­кислого газа к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Рассмотрим для примера, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисле­ния молекулы глюкозы можно выразить формулой:

При окислении глюкозы количество молекул образовавшегося углекислого газа и количество молекул затраченного (поглощенного) кислорода равны. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро - Жерара). Следовательно, дыхательный коэффициент

отношение) при окислении глюкозы и других углеводов равен единице.


При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл. 20.

Таблица 20 Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Оч носительное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Количество потребленного организмом кислорода исследуется при помощи различ­ного типа спирографов.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий