Схемы с использованием эдс самоиндукции. Эдс самоиндукции и индуктивность цепи. геометрической формы контура и его размеров

Темы кодификатора ЕГЭ : самоиндукция, индуктивность, энергия магнитного поля.

Самоиндукция является частным случаем электромагнитной индукции. Оказывается, что электрический ток в контуре, меняющийся со временем, определённым образом воздействует сам на себя.

Ситуация 1 .Предположим, что сила тока в контуре возрастает. Пусть ток течёт против часовой стрелки; тогда магнитное поле этого тока направлено вверх и увеличивается (рис. 1 ).

Рис. 1. Вихревое поле препятствует увеличению тока

Таким образом, наш контур оказывается в переменном магнитном поле своего собственного тока. Магнитное поле в данном случае возрастает (вместе с током) и потому порождает вихревое электрическое поле, линии которого направлены по часовой стрелке в соответствии с правилом Ленца.

Как видим, вихревое электрическое поле направлено против тока, препятствуя его возрастанию; оно как бы «тормозит» ток. Поэтому при замыкании любой цепи ток устанавливается не мгновенно - требуется некоторое время, чтобы преодолеть тормозящее действие возникающего вихревого электрического поля.

Ситуация 2 . Предположим теперь, что сила тока в контуре уменьшается. Магнитное поле тока также убывает и порождает вихревое электрическое поле, направленное против часовой стрелки (рис. 2 ).

Рис. 2. Вихревое поле поддерживает убывающий ток

Теперь вихревое электрическое поле направлено в ту же сторону, что и ток; оно поддерживает ток, препятствуя его убыванию.

Как мы знаем, работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура - это ЭДС индукции. Поэтому мы можем дать такое определение.

Явление самоиндукции состоит в том, что при изменении силы тока в контуре возникает ЭДС индукции в этом же самом контуре .

При возрастании силы тока (в ситуации 1) вихревое электрическое поле совершает отрицательную работу, тормозя свободные заряды. Стало быть, ЭДС индукции в этом случае отрицательна.

При убывании силы тока (в ситуации 2) вихревое электрическое поле совершает положительную работу, «подталкивая» свободные заряды и препятствуя убыванию тока. ЭДС индукции в этом случае также положительна (нетрудно убедиться в том, что знак ЭДС индукции, определённый таким образом, согласуется с правилом выбора знака для ЭДС индукции, сформулированным в листке «Электромагнитная индукция»).

Индуктивность

Мы знаем, что магнитный поток, пронизывающий контур, пропорционален индукции магнитного поля: . Кроме того, опыт показывает, что величина индукции магнитного поля контура с током пропорциональна силе тока: . Стало быть, магнитный поток через поверхность контура, создаваемый магнитным полем тока в этом самом контуре, пропорционален силе тока: .

Коэффициент пропорциональности обозначается и называется индуктивностью контура:

(1)

Индуктивность зависит от геометрических свойств контура (формы и размеров), а также от магнитных свойств среды, в которую помещён контур (Улавливаете аналогию? Ёмкость конденсатора зависит от его геометрических характеристик, а также от диэлектрической проницаемости среды между обкладками конденсатора). Единицей измерения индуктивности служит генри (Гн).

Допустим, что форма контура, его размеры и магнитные свойства среды остаются постоянными (например, наш контур - это катушка, в которую не вводится сердечник); изменение магнитного потока через контур вызвано только изменением силы тока. Тогда , и закон Фарадея приобретает вид:

(2)

Благодаря знаку «минус» в (2) ЭДС индукции оказывается отрицательной при возрастании тока и положительной при убывании тока, что мы и видели выше.

Рассмотрим два опыта, демонстрирующих явление самоиндукции при замыкании и размыкании цепи.

Рис. 3. Самоиндукция при замыкании цепи

В первом опыте к батарейке подключены параллельно две лампочки, причём вторая - последовательно с катушкой достаточно большой индуктивности (рис. 3 ).

Ключ вначале разомкнут.

При замыкании ключа лампочка 1 загорается сразу, а лампочка 2 - постепенно. Дело в том, что в катушке возникает ЭДС индукции, препятствующая возрастанию тока. Поэтому максимальное значение тока во второй лампочке устанавливается лишь спустя некоторое заметное время после вспыхивания первой лампочки.

Это время запаздывания тем больше, чем больше индуктивность катушки. Объяснение простое: ведь тогда больше будет напряжённость вихревого электрического поля, возникающего в катушке, и потому батарейке придётся совершить большую работу по преодолению вихревого поля, тормозящего заряженные частицы.

Во втором опыте к батарейке подключены параллельно катушка и лампочка (рис. 4 ). Сопротивление катушки много меньше сопротивления лампочки.

Рис. 4. Самоиндукция при размыкании цепи

Ключ вначале замкнут. Лампочка не горит - напряжение на ней близко к нулю из-за малости сопротивления катушки. Почти весь ток, идущий в неразветвлённой цепи, проходит через катушку.

При размыкании ключа лампочка ярко вспыхивает! Почему? Ток через катушку начинает резко убывать, и возникает значительная ЭДС индукции, поддерживающая убывающий ток (ведь ЭДС индукции, как видно из (2) , пропорциональна скорости изменения тока).

Иными словами, при размыкании ключа в катушке появляется весьма большое вихревое электрическое поле, разгоняющее свободные заряды. Под действием этого вихревого поля через лампочку пробегает импульс тока, и мы видим яркую вспышку. При достаточно большой индуктивности катушки ЭДС индукции может стать существенно больше ЭДС батарейки, и лампочка вовсе перегорит.

Лампочку-то, может, и не жалко, но в промышленности и энергетике данный эффект является серьёзной проблемой. Так как при размыкании цепи ток начинает уменьшаться очень быстро, возникающая в цепи ЭДС индукции может значительно превышать номинальные напряжения и достигать опасно больших величин. Поэтому в агрегатах, потребляющих большой ток, предусмотрены специальные аппаратные меры предосторожности (например, масляные выключатели на электростанциях), препятствующие моментальному размыканию цепи.

Электромеханическая аналогия

Нетрудно заметить определённую аналогию между индуктивностью в электродинамике и массой в механике.

1. Чтобы разогнать тело до заданной скорости, требуется некоторое время - мгновенно изменить скорость тела не получается. При неизменной силе, приложенной к телу, это время тем больше, чем больше масса тела.

Чтобы ток в катушке достиг своего максимального значения, требуется некоторое время; мгновенно ток не устанавливается. Время установления тока тем больше, чем больше индуктивность катушки.

2. Если тело налетает на неподвижную стену, то скорость тела уменьшается очень быстро. Стена принимает на себя удар, и его разрушительное действие тем сильнее, чем больше масса тела.

При размыкании цепи с катушкой ток уменьшается очень быстро. Цепь принимает на себя «удар» в виде вихревого электрического поля, порождаемого убывающим магнитным полем тока, и этот «удар» тем сильнее, чем больше индуктивность катушки. ЭДС индукции может достичь столь больших величин, что пробой воздушного промежутка выведет из строя оборудование.

На самом деле эти электромеханические аналогии простираются довольно далеко;они касаются не только индуктивности и массы, но и других величин, и оказываются весьма полезными на практике. Мы ещё поговорим об этом в листке про электромагнитные колебания.

Энергия магнитного поля

Вспомним второй опыт с лампочкой, которая не горит при замкнутом ключе и ярко вспыхивает при размыкании цепи. Мы непосредственно наблюдаем, что после размыкания ключа в лампочке выделяется энергия. Но откуда эта энергия берётся?

Берётся она, ясное дело, из катушки - больше неоткуда. Но что за энергия была запасена в катушке и как вычислить эту энергию? Чтобы понять это, продолжим нашу электромеханическую аналогию между индуктивностью и массой.

Чтобы разогнать тело массы из состояния покоя до скорости , внешняя сила должна совершить работу . Тело приобретает кинетическую энергию, которая равна затраченной работе: .

Чтобы после замыкания цепи ток в катушке индуктивности достиг величины , источник тока должен совершить работу по преодолению вихревого электрического поля, направленного против тока. Работа источника идёт на создание тока и превращается в энергию магнитного поля созданного тока . Эта энергия запасается в катушке; именно эта энергия и выделяется потом в лампочке после размыкания ключа (во втором опыте).

Индуктивность служит аналогом массы ; сила тока является очевидным аналогом скорости . Поэтому естественно предположить, что для энергии магнитного поля катушки может иметь место формула, аналогичная выражению для кинетической энергии:

(3)

(тем более, что правая часть данной формулы имеет размерность энергии - проверьте!).

Формула (3) действительно оказывается справедливой. Уметь её выводить пока не обязательно, но если вы знаете, что такое интеграл, то вам не составит труда понять следующие рассуждения.

Пусть в данный момент сила тока через катушку равна . Возьмём малый промежуток времени . В течение этого промежутка приращение силы тока равно ; величина считается настолько малой, что много меньше, чем .

За время по цепи проходит заряд . Вихревое электрическое поле совершает при этом отрицательную работу:

Источник тока совершает такую же по модулю положительную работу (сопротивлением катушки, напомним, мы пренебрегаем, так что вся работа источника совершается против вихревого поля):

Интегрируя это от нуля до , найдем работу источника , которая затрачивается на создание тока :

Эта работа превращается в энергию магнитного поля созданного тока, и мы приходим к формуле (3) .

Общеизвестно, что поезд, отходящий от станции, не может сразу развить нужную скорость.

Требуемая скорость достигается лишь по истечении неко­торого промежутка времени. За этот промежуток значительная часть энергии локомотива затрачивается на преодоление инерции поезда т. е. на образование запаса кинетической энергии, и очень незначительная часть - на преодоление трения.

В силу того что движущийся поезд обладает запасом ки­нетической энергии, он не может остановиться мгновенно и будет по инерции двигаться еще некоторое время, т. е. до тех пор, пока не израсходуется на трение весь запас кинетической энергии, сообщенной ему локомотивом в начале движения.

Аналогичные явления имеют место и в замкнутой электри­ческой цепи при включении и выключении тока.

В момент включения постоянного тока (рисунок 1) вокруг проводника образуется магнитное силовое поле .

Рисунок 1. Инерция электрического тока. При включении тока вокруг проводника появляется магнитное поле.

В первые мгновения после включения тока значительная часть энергии источника тока затрачивается на создание этого магнитного поля и лишь незначительная часть - на преодоление сопро­тивления проводника, вернее на нагревание током проводника. Поэтому в момент замыкания цепи ток не сразу достигает предельной своей величины . Предельная сила тока устанавли­вается в цепи лишь после окончания процесса образования вокруг проводника магнитного поля (рисунок 2).

Рисунок 2. При включении источника тока, ток в цепи устанавливается не сразу.

Если, не разрывая замкнутой цепи, выключить из нее ис­точник тока, то ток в цепи прекратится не сразу, а будет про­текать в ней, еще некоторое время уменьшаясь постепенно (рисунок 3) до тех пор, пока не исчезнет магнитное поле во­круг проводника, т. е. пока не израсходуется весь запас энер­гии, заключенной в магнитном поле.

Рисунок 2. Влияние ЭДС самоиндукции на ток в цепи. При выключении источника тока, ток в цепи прекращается не сразу.

Итак, магнитное поле является носителем энергии. Оно на­копляет в себе энергию при включении источника постоянного тока и отдает ее обратно в цепь после выключения источника тока. Энергия магнитного поля, таким образом, имеет много общего с кинетической энергией движущегося предмета. Маг­нитное поле служит причиной «инерции» электрического тока.

Мы знаем, что всякий раз, когда изменяется магнитный поток, пронизывающий площадь, ограниченную замкнутой электрической цепью, в этой цепи появляется ЭДС индукции .

Кроме того, нам известно, что всякое изменение силы тока в цепи влечет за собой изменение числа магнитных силовых линий , охватываемых этой цепью. Если замкнутая цепь непо­движна, то число магнитных силовых линий, пронизывающих данную площадь, может измениться только тогда, когда но­вые линии войдут снаружи в пределы этой площади или когда существующие уже линии выйдут за пределы этой площади. И в том и в другом случае магнитные силовые линии при своем движении должны пересечь проводник. Пересекая про­водник, магнитные силовые линии наводят в нем ЭДС ин­дукции. Но так как в этом случае проводник индуктирует ЭДС в самом себе, то эта ЭДС называется ЭДС самоиндукции .

При включении источника постоянного тока в какую-либо замкнутую цепь площадь, ограниченную этой цепью, начинают пронизывать извне магнитные силовые линии. Каждая магнит­ная силовая линия, приходящая извне, пересекая проводник, наводит в нем ЭДС самоиндукции .

Электродвижущая сила самоиндукции, действуя против ЭДС источника тока, задерживает нарастание тока в цепи. Через несколько мгновений, когда возрастание магнитного по­тока вокруг цепи прекратится, ЭДС самоиндукции исчезнет и в цепи устанавливается сила тока, определяемая по за­кону Ома :

I=U/R

При выключении источника тока из замкнутой цепи маг­нитные силовые линии должны исчезнуть из пространства, ограниченного проводником. Каждая уходящая магнитная силовая линия при пересечении проводника наводит в нем ЭДС самоиндукции, имеющую одинаковое направление с ЭДС источника тока; поэтому ток в цепи прекратится не сразу, а будет протекать в том же направлении, постепенно уменьшаясь до того момента, пока полностью не исчезнет магнитный поток внутри цепи. Ток, протекающий по цепи после выключения из нее источника тока, называется током самоиндукции.

Если при выключении источника цепь разрывается, то ток самоиндукции проявляется в виде искры в месте размыкания цепи.

>> Самоиндукция. Индуктивность

§ 15 САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Самоиндукция . Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому в том же самом проводнике, по которому идет переменный ток, возникает ЭДС индукции. Это явление называют самоиндукцией .

При самоиндукции проводящий контур выполняет двойную роль: переменный ток в проводнике вызывает появление магнитного потока через поверхность, ограниченную контуром. А так как магнитный поток изменяется со временем, то появляется ЭДС индукции . По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах. На рисунке 2.13 показана схема параллельного соединения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую - последовательно с катушкой L, снабженной железным сердечником.

При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (рис. 2.14).

Появление ЭДС самоиндукции при размыкании можно наблюдать в опыте с цепью, схематически показанной на рисунке 2.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. в результате в момент размыкания через гальванометр идет ток (цветная стрелка), направленный против начального тока до размыкания (черная стрелка). Сила тока при размыкании цепи может превышать силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции больше ЭДС батареи элементов.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Индуктивность , либо коэффициент самоиндукции (от лат. indactio — наведение, возбуждение) — является параметром электрической цепи, определяющий ЭДС самоиндукции, которая наводитсяв цепи при изменении протекающего по ней тока либо (и) ее деформации.

Термином «индуктивность» обозначают еще и катушку самоиндукции, определяющую индуктивные свойства цепи.

Самоиндукция — образование ЭДС индукции в проводящем контуре при изменении в нем силы тока . Самоиндукция была открыта в 1832 году американским ученым Дж. Генри. Независимо от него в 1835 году это явление открыл М. Фарадей.

ЭДС индукции образуется при изменении магнитного потока . Если это изменение вызывается собственным током, то говорят об ЭДС самоиндукции:

где L — индуктивность контура, либо его коэффициент самоиндукции.

Индуктивность, как и электроемкость, зависима от геометрии проводника — его размеров и формы, но не зависима от силы тока в проводнике. Таким образом, индуктивность прямого провода намного меньше индуктивности того же провода, свернутого в спираль.

Расчеты показывают, что индуктивность описанного выше соленоида в воздухе вычисляют по формуле:

.

где μ 0 — магнитная постоянная, N — количество витков соленоида, l — длина соленоида, S — площадь поперечного сечения.

Также, индуктивность зависит от магнитных свойств среды, в которой находится проводник , а именно от его магнитной проницаемости , определяющаяся при помощи формулы:

где L 0 — индуктивность контура в вакууме, L — индуктивность контура в однородном веществе, которое заполняет магнитное поле .

Единица индуктивности в СИ - генри (Гн): 1 Гн = 1 В · с/А.

Токи замыкания и размыкания.

При каждом включении и выключении тока в цепи наблюдаются так называемые экстратоки самоиндукции (экстратоки замыкания и размы-кания ), которые возникают в цепи из-за явления самоиндукции и которые препятс-твуют, согласно правилу Ленца , нарастанию или убыванию тока в цепи.

На рисунке выше показана схема соединения 2х одинаковых ламп. Одна из них подключена к источнику через резистор R , а другая — последова-тельно соединена с катушкой L с железным сердечником. При замыкании цепи первая лампа вспыхивает почти мгновенно, а вторая — с существенным опозданием. Это вызвано тем, что ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значе-ния.

При размыкании ключа в катушке L образуется ЭДС само-индукции, которая поддерживает первоначальный ток .

В итоге в момент размыкания через гальванометр течет ток (светлая стрелка), который направлен против начального тока до размыкания (черная стрелка). При этом ЭДС самоиндукции может быть намного больше ЭДС батареи элементов, что будет проявляться в том, что экстраток размыкания будет сильно превышать стационарный ток при замкнутом ключе.

Индуктивность характеризует инерционность цепи по отношению к из-менению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом ток I играет роль скорости тела.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий