В процессе аэробного окисления глюкоза расщепляется до. Шпаргалка: Аэробное окисление углеводов. Биологическое окисление и восстановление

Дыхание. Аэробное окисление углеводов происходит в присутствии кислорода воздуха, в связи с чем его часто называют дыханием.

В отличие от гликолиза (гликогенолиза), где конечным акцептором атомов водорода и электронов служит провиноградная кислота, при дыхании роль такого акцептора выполняет кислород. В первом случае в качестве конечного продукта образуется молочная кислота, в которой суммарная степень окисления углерода осталась такой же, как и у глюкозы, во втором случае образуется углекислый газ - значительно более простое соединение, у которого единственный атом углерода полностью окислен. Вместе с тем дыхание и гликолиз имеют много общих звеньев.

Дыхание, так же как и гликолиз, сопровождается образованием фосфорных эфиров глюкозы и фруктозы, фосфотриоз-диоксиацетонфосфата и глицеральдегид-3-фосфата, а также таких промежуточных продуктов, как 1,3-дифосфоглицериновая кислота, 3-фосфоглицерат, фосфоенолпирувати пировиноградная кислота. Многие реакции гликолиза и дыхания катализируются одними и теми же ферментами. Другими словами, при дыхании превращение глюкозы до молочной кислоты проходит все те этапы, что и при гликолизе. Однако при этом атомы водорода, отщепленные от глицеральдегид-3-фосфата, не восстанавливают пировиноградную кислоту, а передаются на кислород, пройдя через сложную систему ферментов дыхательной цепи.

Молочная кислота, образующаяся в процессе гликолиза, как уже говорилось, содержит еще довольно значительный запас (примерно 93 %) потенциальной энергии. Однако несмотря на это, первые живые организмы, извлекавшие энергию в анаэробных условиях, выделяли ее в окружающую среду.

С появлением в атмосфере Земли кислорода живые организмы выработали новые, более совершенные механизмы окисления, в результате которых количество высвобождающейся энергии оказалось намного больше, чем при гликолизе, поскольку конечным продуктом дыхания является СО 2 , атом углерода которого полностью окислен. Наряду с этим природа создала новые механизмы доокисления конечного продукта гликолиза, который выводился в окружающую среду. Иными словами, она как бы создала надстройку над гликолизом для окисления его конечного продукта в аэробных условиях, сохранив прежними многие его этапы.

При дыхании не образуется молочная кислота. Поэтому пировиноградная кислота является тем общим субстратом, или центральным звеном, где заканчивается гликолиз и начинается дыхание (или же расходятся пути гликолиза и дыхания - анаэробного и аэробного окисления глюкозы).

Сохранив прежние этапы гликолиза, клетки организма человека и высших животных сохранили способность окислять глюкозу в анаэробных условиях, в результате чего при недостатке кислорода они имеют возможность получать энергию таким путем. Однако при этом образовавшаяся в анаэробных условиях молочная кислота, обладающая довольно большим запасом энергии, не выбрасывается в окружающую среду, а накапливается и мышцах. Из мышц она током крови доставляется в печень, где снова превращается в глюкозу. При поступлении в клетку достаточного количества кислорода часть молочной кислоты окисляется дальше до СО 2 и Н 2 О.

Превращение молочной кислоты. Образовавшаяся при анаэробном окислении глюкозы молочная кислота окисляется до СО 2 и Н 2 О следующим образом. Сначала под действием фермента лактатдегидрогеназы, коферментом которой является НАД, она окисляется до пировиноградной кислоты:

которая затем под влиянием пируватдекарбоксилазы, представляющей собой сложный полиферментный комплекс, подвергается окислительному декарбоксилированию с образованием активной формы уксусной кислоты - ацетил- КоА:

где ТПФ - тиаминпирофосфат; ЛК - липоевая кислота; HSKoA - коэнзим А.

В том случае, когда ткани хорошо снабжаются кислородом, пировиноградная кислота подвергается окислительному декарбоксилированию сразу, не восстанавливаясь до молочной кислоты. Восстановленный же кофермент НАД Н + Н + , образовавшийся при окислении глицеральдегид-3-фосфата, передает водород через ферменты аэробного обмена (т.е. дыхательную цепь) на кислород, образуя воду.

Превращение пировиноградной кислоты в ацетил-КоА является подготовительной, или переходной, стадией, благодаря которой углеводы через пировиноградную кислоту, а затем через ацетил-КоА включаются в новый этап - кислородное окисление. Другими словами, этот процесс - связующее звено между гликолизом и собственно дыханием. Однако уже в результате окислительного декарбоксилирования пировиноградной кислоты до ацетил-КоА высвобождается около 9 % всей энергии окисления глюкозы, т.е. больше, чем при гликолизе в целом, где высвобождается всего 5-7 % энергии. Если учесть 5-7 % энергии гликолиза и 9 % энергии окислительного декарбоксилирования пировиноградной кислоты, то всего выделяется 14-16 % энергии, аккумулированной в углеводах. Следовательно, остальные 84-86 % энергии сохраняется еще в молекуле уксусной кислоты.

Цикл трикарбоновых кислот (цикл Кребса) представляет собой новый, более совершенный механизм окисления углеводов, выработанный у живых организмов с появлением на Земле кислорода. При помощи этого механизма происходит дальнейшее превращение уксусной кислоты в форме ацетил-КоА до СО 2 и Н 2 О в аэробных условиях с высвобождением энергии.

В связи с тем что первыми субстратами в процессе окисления уксусной кислоты являются трикарбоновые кислоты, а гипотезу о механизме этого окисления выдвинул X. А. Кребс, процесс назвали циклом трикарбоновых кислот, или циклом Кребса.

Первой реакцией цикла является реакция конденсации ацетил-КоА со щавелевоуксусной кислотой, которую катализирует фермент цитратсинтаза. В результате образуется активная форма лимонной кислоты - цитрил-KoA:

Гидролизуясь, цитрил-КоА превращается в лимонную кислоту:

Последняя под действием фермента аконитатгидратаза превращается в цис-аконитовую кислоту, которая, присоединяя воду, превращается в изолимонную кислоту:

Изолимонная кислота далее окисляется путем отщепления двух атомов водорода, превращаясь в щавелевоянтарную. Этой реакцией начинается отщепление СО 2 и первое окисление ацетил-КоА в трикарбоновом цикле. Щавелево-янтарная кислота, декарбоксилируясь, превращается в α-кетоглутаровую кислоту. Дегидрирование изолимон-ной и декарбоксилирование щавелево-янтарной кислот катализируется ферментом изоцитратдегидрогеназой с участием кофермента НАД + :

Следующим этапом цикла трикарбоновых кислот является реакция окислительного декарбоксилирования α-кетоглутаровой кислоты, в результате которой образуется янтарная кислота. Этот процесс протекает в две стадии. Сначала α-кетоглутаровая кислота подвергается окислительному декарбоксилированию с образованием активной формы янтарной кислоты - сукцинил-КоА - и СО 2 . Эта реакция напоминает реакцию превращения пировиноградной кислоты до ацетил-КоА и катализируется также сложным полиферментным комплексом - α-кетоглутаратдегидрогеназой. В результате этой реакции происходит второе отщепление углекислого газа и дегидрирование уксусной кислоты, вступившей в цикл:

Образовавшаяся активная форма янтарной кислоты сукцинил-КоА, в отличие от ацетил-КоА, представляет собой макроэргическое тио-эфирное соединение, в котором аккумулирована энергия окисления α-кетоглутаровой кислоты.

На следующей стадии эта энергия используется для образования ГТФ (гуанозинтрифосфорной кислоты) из ГДФ и неорганической фосфорной кислоты и запасается в фосфатных связях этого соединения. Реакция катализируется ферментом сукцинилтиокиназой:

Образовавшийся в результате этой реакции ГТФ взаимодействует с АДФ, в результате чего образуется АТФ:

ГТФ + АДФ ГДФ + АТФ.

Синтез АТФ, сопряженный с окислением субстрата, является еще одним примером субстратного фосфорилирования.

В дальнейшем ходе цикла трикарбоновых кислот происходит еще два дегидрирования. Янтарная кислота под действием сукцинатде-гидрогеназы с участием кофермента ФАД + отщепляет два атома водорода и превращается в фумаровую кислоту, а ФАД + восстанавливается до ФАД Н 2 . Затем фумаровая кислота, присоединяя молекулу воды, образует яблочную кислоту (малат), которая при помощи малат-дегидрогеназы и кофермента НАД + снова подвергается дегидрированию. При этом образуется щавелево-уксусная кислота, т.е. субстрат, с которого начался цикл трикарбоновых кислот:

Регенерированная щавелево-уксусная кислота может снова вступать в реакцию с новой молекулой ацетил-КоА, и процесс начнется в том же порядке.

Общую схему цикла трикарбоновых кислот можно представить следующим образом:

Цикл трикарбоновых кислот

(в рамках показаны конечные продукты окисления ацетил-КоА).

Из приведенной схемы следует, что основная функция цикла Кребса заключается в дегидрировании уксусной кислоты. Если подвести баланс ферментативного дегидрирования одного цикла, можно легко подсчитать, что в результате реакций образуется восемь атомов водорода: шесть атомов используется для восстановления НАД + и два - для восстановления ФАД + сукцинатгидрогеназы.

Суммарная реакция этого цикла описывается следующим уравнением:

СН 3 СООН + 2Н 2 О 2СО 2 + 8Н,

из которого следует, что четыре атома водорода принадлежат воде. Следовательно, остальные четыре образовались при дегидрировании уксусной кислоты, т.е. это весь водород, который был в составе ее молекулы. Одновременно с этим в виде оксида углерода (IV) дважды выделилось два атома углерода (один раз при декарбоксилировании щавелево-янтарной кислоты, второй - при декарбоксилировании α-кетоглутаровой кислоты), т.е. ровно столько, сколько их поступило в цикл в виде ацетальной группы.

Из приведенного выше уравнения также следует, что в цикл не вовлекаются ни кислород, ни АТФ, ни неорганическая фосфорная кислота. Все эти метаболиты взаимодействуют в дыхательной цепи, куда вовлекаются неорганическая фосфорная кислота, отщепленные при дегидрировании атомы водорода и кислород, а в результате окислительного фосфорилирования образуется АТФ. Энергия для этого процесса выделяется в результате окислительно-восстановительных реакций при передаче атомов водорода и электронов от восстановленных форм НАД Н 2 и ФАД Н 2 на кислород.

Процесс окислительного фосфорилирования подробно изложен в гл. 22. Напомним только, что на каждую пару электронов (пара атомов водорода) в дыхательной цепи путем окислительного фосфорилирования образуется три молекулы АТФ (одна при переносе атомов водорода от НАД Н + Н + к ФАД, вторая - при переносе пары электронов от цитохрома b к цитохрому с и третья - от цитохрома а 3 к атому кислорода). Таким образом, каждая окислительная стадия превращения глюкозы до СО 2 и Н 2 О, связанная с НАД, сопровождается образованием трех молекул АТФ, связанная с ФАД - образованием двух молекул АТФ.

Энергетический баланс окисления углеводов. Сначала подведем итог энергетического баланса за счет дегидрирования уксусной кислоты в цикле Кребса. Как мы уже установили, в этом цикле происходит четыре дегидрирования, в результате которых образовались три восстановленные формы НАД, одна- ФАД и путем субстратного фосфорилирования синтезировалась одна молекула АТФ:

Таким образом, в цикле Кребса синтезируется в шесть раз больше АТФ, чем при гликолизе. Если учесть еще две восстановленные молекулы НАД, образовавшиеся при окислении молочной и пировиноград-ной кислот, то это составит еще 6 молекул АТФ, а в сумме- 18. Поскольку глюкоза распадается на две фосфотриозы, количество АТФ увеличивается в 2 раза и составит 36 молекул.

Добавив к этому 2 молекулы АТФ, образовавшиеся в процессе гликолиза, получим общий баланс энергии, аккумулированной в мак-роэргических связях АТФ при окислении глюкозы до СО 2 и Н 2 О: 36 + 2 = 38.

Установлено, что полное окисление 1 моль глюкозы до СО 2 и Н 2 О сопровождается выделением 2872 кДж. В 38 молекулах АТФ аккумулируется 1270-1560 кДж, т.е. приблизительно 50 % всей энергии, высвободившейся в процессе окисления. Следовательно, остальные 50 % энергии рассеиваются в организме в форме теплоты для поддержания соответствующей температуры.

Из рассмотренных фаз окисления глюкозы исключительно важное значение имеет аэробная фаза. Если при анаэробном окислении, т.е. при образовании молочной кислоты, выделяется всего 197 кДж энергии, из которых 40 % аккумулируется в макроэргических связях двух молекул АТФ, то в аэробной фазе выделяется 2872 - 197 = = 2675 кДж, что составляет около 93 % всей энергии. Таким образом, основную массу энергии организм получает при дыхании.

Апотомический путь окисления глюкозы. Наряду с циклом Кребса во многих клетках существует и другой путь расщепления глюкозы, называемый апотомическим, или пентозофосфатным. Экспериментально установлено, что в аэробных условиях в эритроцитах, печени, почках глюкоза может окисляться до 6-монофосфоглюконовой кислоты, причем фруктозо-1,6-дифосфат в этом процессе не образуется. В результате такого окисления глюкозы образуется значительное количество пентоз. Этот путь был открыт советским биохимиком В. А. Энгельгардтом, а отдельные его этапы изучены О. Варбургом, Ф. Диккенсом, И. Д. Головацким и др. Пентозофосфатный путь не является главным путем окисления глюкозы. Основное его назначение состоит в том, чтобы снабжать клетки восстановленными формами НАДФ, необходимыми для биосинтеза жирных кислот, холестерина, пуриновых и пиримидиновых оснований, стероидов и др. Вторая функция этого пути заключается в том, что он поставляет пентозы, главным образом D-рибозу, для синтеза нуклеиновых кислот.

Пентозофосфатный путь расщепления глюкозы суммарно можно выразить следующим уравнением:

Глюкозо-6-монофосфат + 2 НАДФ + → Рибозо-5-монофосфат + СО 2 + 2 НАДФ·Н + Н + + 2Н + .

Пентозы, не использованные для биосинтеза нуклеиновых кислот и нуклеотидов, расходуются на биосинтез других соединений и регенерацию глюкозы.

Биосинтез углеводов

Существует два основных способа биосинтеза углеводов из относительно несложных метаболитов. Один из них заключается в восстановлении углекислого газа до глюкозы. Этот процесс, характерный для зеленых растений и называемый фотосинтезом, осуществляется за счет энергии солнечных лучей при помощи хлорофилла согласно следующему уравнению:

СО 2 + 2Н 2 О 1/6С 6 Н 12 О 6 + О 2 + Н 2 О.

Улавливая солнечные лучи и преобразуя их энергию в энергию углеводов, зеленые растения обеспечивают сохранение и развитие жизни на Земле. В этом заключается, по словам К. А.Тимирязева, космическая роль зеленых растений как посредника между солнцем и всем живым на Земле.

В последнее время работами группы ученых Института биохимии им. А. В. Палладина АН УССР под руководством академика М. Ф. Гулого показано, что ткани высших животных также способны фиксировать углекислый газ, хотя механизм фиксации его отличается от такового у фотосинтезирующих клеток. Он заключается в наращивании углеродного скелета оксидом углерода (IV) таких субстратов, как кетокислоты, жирные кислоты, аминокислоты и др.

В печени, почках и скелетных мышцах человека и высших животных существует другой путь биосинтеза углеводов, называемый глюконеогенезом. Это синтез глюкозы из пировиноградной или молочной кислоты, а также из так называемых гликогенных аминокислот, жиров и других предшественников, которые в процессе метаболизма могут превращаться в пировиноградную кислоту или метаболиты цикла трикарбоновых кислот.

Глюконеогенез- это путь, обратный гликолизу. Однако в этом пути есть три стадии, которые в энергетическом отношении не могут быть использованы при превращении пировиноградной кислоты в глюкозу. Эти три стадии гликолиза заменены «обходными» реакциями с меньшей затратой энергии.

Первой обходной реакцией является превращение пировиноградной кислоты в фосфоенолпировиноградную. Поскольку расщепление глюкозы происходит в митохондриях, а синтез - в цитоплазме, на первом этапе митохондриальная пировиноградная кислота превращается сначала в щавелево-уксусную. Катализирует это превращение фермент пируваткарбоксилаза, активируемая ацетил-КоА с участием АТФ. Образовавшаяся щавелево-уксусная кислота восстанавливается затем с участием НАД Н +Н + в яблочную:

Пировиноградная кислота + СО 2 Щавелево-уксусная кислота Яблочная кислота.

Яблочная кислота диффундирует в цитоплазму, окисляется цитоплазматической малатдегидрогеназой с образованием цитоплазматической щавелево-уксусной кислоты, из которой образуется фосфоенолпировиноградная кислота. Эту реакцию катализирует фосфоенолпируваткарбоксикиназа. Донором фосфорной кислоты служит ГТФ:

Яблочная кислота Щавелево-уксусная кислота Фосфоенолпировиноградная кислота.

Далее следует целая серия обратных реакций, заканчивающихся образованием фруктозо-1,6-дифосфата. Превращение фруктозо-1,6-дифосфата в фруктозо-6-фосфат- вторая необратимая реакция гликолиза. Поэтому она катализируется не фосфофруктокиназой, а фруктозодифосфатазой. Этот фермент катализирует необратимый гидролиз 1-фосфатной группы:

Фруктозо-1, 6-дифосфат + Н 2 О →Фруктозо-6-фосфат + Н 3 РО 4 .

На следующей (обратимой) стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат под действием фосфоглюко-изомеразы гликолиза.

Расщепление глюкозо-6-фосфата до глюкозы - третья необратимая реакция, которая не осуществляется путем обращения гексокиназой. Свободная глюкоза образуется при помощи глюкозо-6-фосфатазы, катализирующей реакцию гидролиза:

Глюкозо-6-фосфат +Н 2 О → Глюкоза + H 3 PO 4 .

В большинстве клеток глюкозо-6-фосфат, образующийся в процессе гликогенолиза, используется как предшественник для биосинтеза олиго- и полисахаридов. Большую роль в биосинтезе этих сложных сахаров играет соединение уридинфосфоглюкоза, которая выполняет роль промежуточного переносчика глюкозы.

При биосинтезе гликогена, например, глюкозо-6-фосфат, превратившись в глюкозо-1-фосфат под действием фосфоглюкомутазы, взаимодействует с уридинтрифосфорной кислотой (УТФ) - соединением, аналогичным АТФ, в которое вместо аденина входит азотистое основание урацил. В результате этого взаимодействия при помощи глюкозо-I -фосфатуридилтрансферазы образуется уридилдифосфоглюкоза:

Глюкозо-1-фосфат + УТФ УДФ-глюкоза+Фн.

На заключительном этапе биосинтеза гликогена в реакции, катали-зируемой гликогенсинтетазой, остаток глюкозы с УДФ-глюкозы переносится на концевой остаток глюкозы амилазной цепи с образованием 1,4-гликозидной связи (см. гл. 16). Ветвление гликогена путем образования 1,6-связей завершается амило-1,4-1,6-трансглюкозидазой.

Биосинтез гликогена осуществляется не только из глюкозо-6-фосфата, образовавшегося путем глюконеогенеза. Как уже отмечалось выше, для его биосинтеза используется также часть глюкозы после всасывания. Синтез гликогена, как процесс образования подвижного резерва углеводов в организме, имеет большое биологическое значение. Ведущая роль в этом принадлежит печени. Благодаря синтезу и отложению гликогена в печени поддерживается постоянная концентрация глюкозы в крови и других тканях, а также предотвращаются потери ее с мочой при употреблении пищи, особенно углеводной. Кроме того, отложение гликогена в печени способствует постепенному использованию углеводов в зависимости от условий существования организма.

Использованию глюкозы для синтеза гликогена предшествует образование глюкозофосфорных эфиров. Сначала образуется глюко-зо-6-монофосфат. Источником энергии и донатором фосфата является АТФ. Катализирует эту реакцию гексокиназа. Под действием фермента фосфоглюкомутазы глюкозо-6-монофосфат превращается в глюкозо-1-монофосфат:

Дальнейшее превращение глюкозо-1-монофосфата до гликогена протекают уже знакомым нам путем.

Глава 24. ОБМЕН ЛИПИДОВ

Липиды представляют собой большую группу органических соединений. Все они различаются по своему химическому составу и структуре, но обладают одним общим для них свойством - нерастворимостью в воде. В связи с тем что ферменты, действующие на эти органические соединения, водорастворимы, расщепление и всасывание липидов в пищевом канале характеризуются некоторыми особенностями. Наличие же липидов различной структуры обусловливает различные пути их расщепления и синтеза.

Остановимся на обмене жиров, фосфатидов и стеридов, имеющих наиболее важное биологическое значение.

Обмен липидов, как и углеводов,- многоступенчатый процесс, который состоит из пищеварения, всасывания, транспортирования липидов кровью, внутриклеточного окисления и биосинтеза.

Переваривание липидов

Переваривание триглицеридов. Триглицериды, или нейтральные жиры, являются концентрированными источниками энергии в организме. При окислении 1 г жира высвобождается около 38,9 кДж энергии. Являясь гидрофобными соединениями, жиры резервируются в компактной форме, занимая сравнительно мало места в организме. Вместе с пищей в организм человека ежесуточно поступает до 70 г жиров растительного и животного происхождения. По своей химической природе они являются главным образом триглицеридами.

Расщепление жиров происходит при помощи ферментов, называемых липазами. Слюна не содержит таких ферментов, поэтому в ротовой полости жиры никаким изменениям не подвергаются. В желудке активность липазы очень слабая. Это связано с тем, что в желудке реакция среды сильнокислая (рН = 1,5-2,5), в то время как оптимум действия липазы находится при рН = 7,8 = 8,1. В связи с этим в желудке переваривается всего 3-5 % поступающих жиров.

Переваривание жиров в желудке происходит только у новорожденных и детей грудного возраста. Это связано с тем, что рН среды в желудке новорожденных составляет 5,6, а в этих условиях липаза проявляет большую активность. Кроме того, жир материнского молока, которое является основным продуктом питания детей в этот период, находится в сильно эмульгированном состоянии, а само молоко содержит липолитический фактор, принимающий участие в переваривании жиров.

Однако желудок все же играет определенную роль в процессе переваривания жиров у взрослых. Он регулирует поступление жира в кишки и переваривает белки, освобождая таким путем жир из липопротеидных комплексов пищи.

Основным местом переваривания жиров является двенадцатиперстная кишка и отделы тонкой кишки. Поскольку жиры нерастворимы в воде, а ферменты, расщепляющие их, являются водорастворимыми соединениями, необходимым условием для гидролитического расщепления жиров на составные части является их диспергирование (дробление) с образованием тонкой эмульсии. Диспергирование и эмульгирование жира происходит в результате действия нескольких факторов: желчных кислот, свободных высших жирных кислот, моно- и диглицеридов, а также белков. Этому способствуют также перистальтика кишок и постоянно образующийся углекислый газ, который выделяется при взаимодействии кислых компонентов пищи, поступающих из желудка, с карбонатами кишок, создающими щелочную среду. Образовавшийся углекислый газ «пробулькивает» через пищевые массы, участвуя таким образом в диспергировании жира. Нейтрализации содержимого желудка способствует также поступление в просвет тонкой кишки желчи, обладающей щелочным характером.)

Желчь - вязкая жидкость светло-желтого цвета со специфическим запахом, горькая на вкус. В состав желчи входят желчные кислоты. желчные пигменты, продукты распада гемоглобина, холестерин, лецитин, жиры, некоторые ферменты, гормоны и др. Желчь способствует перистальтике тонкой кишки, оказывает бактериостатическоедействие на ее микрофлору. С желчью выделяются из организма яды. Она является также активатором липолитических ферментов и повышает проницаемость стенки кишок.

Главной составной частью желчи являются желчные кислоты. Они образуются в печени из холестерина и находятся в желчи как в свободном, так и в связанном состоянии, а также в виде натриевых солей. В желчи человека содержится в основном три желчных кислоты Основную массу составляют холевая (3,7,12-тригидроксихола-новая) и дезоксихолевая (3,12-дигидроксихолановая), небольшую часть - литохолевая (3-гидроксихолановая) кислоты, которые являются производными холановой кислоты:

Холевая кислота может находиться в желчи также в связанном состоянии в виде парных соединений с глицином и производным цистеина таурином - соответственно гликохолевой и таурохолевой кислот:

Натриевая соль гликохолевой кислоты

Натриевая соль таурохолевой кислоты

Благодаря наличию желчных кислот происходит снижение поверхностного натяжения липидных капель, что способствует образованию очень тонкой и устойчивой эмульсии диаметр частиц которой составляет около 0,5 мкм. Образованию эмульсии способствуют также моноглицериды и высшие жирные кислоты. Эмульгирование жира приводит к колоссальному увеличению поверхности соприкосновения липазы с водным раствором. Таким образом, чем тоньше эмульсия жиров, тем лучше и быстрее они расщепляются липазой. Кроме того, в виде тонкой эмульсии жиры могут даже всасываться стенкой кишок непосредственно, не расщепляясь на составные части.

В присутствии желчных кислот под действием липазы в просвете тонкой кишки происходит гидролитическое расщепление жиров. В результате этого образуются продукты частичного и полного расщепления жиров - моно- и диглицериды, свободные высшие жирные кислоты и глицерин:

Здесь же содержится и часть нерасщепленного жира в виде очень тонкой эмульсии. Все эти продукты в дальнейшем всасываются стенкой кишок. В этой смеси триглицериды составляют около 10 % , моно-

идисахариды - также 10 % , а основная масса - около 80 % - продукты полного расщепления жиров- глицерин и высшие жирные

Переваривание фосфоглицеридов. Основным местом переваривания фосфатидов также является двенадцатиперстная кишка. Эмульгирование этих липидов происходит под влиянием тех же веществ, что и три-глицеридов. Однако гидролитическое расщепление фосфатидов осуществляется под действием фосфолипаз А, В, С и D. Каждый фермент действует на определенную сложноэфирную связь фосфолипида. Гидролитическое расщепление, например, лецитина происходит следующим образом:

Такому полному расщеплению подвергается незначительная часть фосфатидов, поскольку его промежуточные продукты хорошо растворимы в воде и легко всасываются стенкой кишок. К тому же фосфогли-цериды легко образуют эмульсии, которые также могут всасываться кишечной стенкой.

Переваривание стеридов. Стериды, входящие в состав пищи, эмульгируются под влиянием тех же факторов, что и жиры, после чего подвергаются гидролитическому расщеплению до свободных стеринов и высших жирных кислот. Этот процесс осуществляется под действием фермента холестеринэстеразы.

Всасывание липидов

Врезультате пищеварения жиров, фосфатидов, стеридов в просвете тонкой кишки образуется значительное количество продуктов их частичного и полного гидролитического расщепления: моно- и диглицериды, высшие жирные кислоты, стерины, азотистые основания, фосфорная кислота. Содержится также небольшое количество триглицеридов, находящихся в тонкоэмульгированном состоянии. Все эти продукты всасываются стенкой тонкой кишки.

Такие продукты расщепления, как жирные кислоты и холестерин, плохо растворяясь в воде, образуют с желчными кислотами водорастворимые комплексы- так называемые холеиновые кислоты. Эти кислоты легко проникают в эпителиальные клетки стенки кишок, где расщепляются на составные части. Освобожденные желчные кислоты возвращаются в просвет кишок и снова используются для транспортирования нерастворимых в воде продуктов расщепления жиров.

Часть продуктов расщепления (глицерин, глицеринфосфорная кислота, азотистые основания) хорошо растворимы в воде и легко проникают в эпителиальные клетки. Фосфорная кислота всасывается в клетки эпителия стенки тонкой кишки в виде натриевых и калиевых солей. В основе всасывания липидов лежит ряд сложных физико-химических и биологических процессов, для осуществления которых затрачивается энергия макроэргических связей АТФ.

В эпителиальных клетках слизистой оболочки кишок из всосавшихся продуктов гидролитического расщепления снова синтезируются липиды. Однако этот ресинтез приводит к образованию специфических жиров, характерных для данного организма.

Для образования нейтральных жиров используются высшие жирные кислоты, глицерин, моно- и диглицериды. Одновременно происходит и синтез фосфатидов, для которых используются главным образом глицеринфосфорная кислота, глицериды и диглицериды, а также в небольшом количестве моноглицериды. Из холестерина и высших жирных кислот образуются стериды.

В эпителиальных клетках стенки кишок из синтезированных липидов, а также капель всосавшихся триглицеридов, витаминов (A, D, Е, К) ибелков образуются комплексы размером 150-200 нм, называемые хило микронами. Внутреннее содержимое хиломикрона, представленное образовавшимися различного рода липидами, главным образом триглицеридами, окружено наружной белковой оболочкой, благодаря которой хиломикроны хорошо растворяются в воде. Хило-микроны диффундируют сначала в межклеточную жидкость, затем в лимфатические капилляры и в конце концов попадают в кровяное русло, где под действием гепарина распадаются на мелкие частицы. С током крови они разносятся по всему организму и откладываются в резерв в жировых депо - подкожной и околопочечной клетчатке, сальнике, брыжейке, мышечной ткани. Часть жиров крови используется для пластических целей, как источник химической энергии и т.д.

Таким образом, хиломикроны являются переносчиками образовавшихся в эпителиальных клетках тонкой кишки липидов. При этом они транспортируют в крови главным образом триглицериды.

Наряду с хиломикронами существуют и другие формы транспорта липидов кровью, например α- и β-липопротеиды. Их молекулы представляют собой сложные комплексы липидов с белками. α-Липопро-теиды являются основными транспортными формами фосфатидов, β-липопротеиды- переносчиками холестерина и его эфиров.

Наиболее подвижной формой липидов являются свободные высшие жирные кислоты.

Важная роль в активном транспортировании липидов принадлежит форменным элементам крови. Эритроциты, например, участвуют в переносе фосфатидов и холестерина, лейкоциты- триглицеридов.

Большая роль в обмене липидов принадлежит жировым депо. Исследования показали, что в жировых депо откладывается не только вновь синтезированный в организме специфически видовой жир, но и в небольших количествах чужеродный, т.е. входящий в состав пищи. Опыты, проведенные на голодающих собаках, показали, что пищевые жиры после всасывания поступают сначала в жировые депо, из которых переходят в плазму крови.

Таким образом, жировая ткань не является пассивным депо жиров, состав ее постоянно обновляется за счет липидов, всасывающихся из кишок или синтезируемых в организме.

15.2.1. Гликолиз - это ферментативный распад глюкозы в аэробных условиях до двух молекул пировиноградной кислоты (аэробный гликолиз ), а в анаэробных условиях - до двух молекул молочной кислоты (анаэробный гликолиз ). В анаэробных условиях гликолиз протекает в тканях без потребления кислорода и является единственным процессом, поставляющим АТФ, так как окислительное фосфорилирование в этих условиях не функционирует. Анаэробный гликолиз происходит во всех тканях, функционирующих в условиях гипоксии, прежде всего в скелетных мышцах. Гликолиз в эритроцитах даже в присутствии кислорода завершается образованием лактата, поскольку в этих клетках отсутствуют митохондрии.

Гликолиз протекает в цитозоле клеток организма. Этот процесс катализируется одиннадцатью ферментами, которые выделены в высокоочищенном состоянии и хорошо изучены. Условно можно разделить гликолиз на две стадии.

15.2.2. Первая стадия гликолиза является подготовительной и включает реакции превращения молекулы глюкозы в две молекулы фосфотриоз. Эта стадия сопровождается затратой молекул АТФ.

Начальной реакцией превращения глюкозы в клетке является её фосфорилирование в результате взаимодействия с АТФ (рисунок 15.1, реакция 1). Эта реакция в условиях клетки протекает только в одном направлении. Биологическая роль реакции фосфорилирования глюкозы заключается в том, что глюкозо-6-фосфат, в отличие от свободной глюкозы, не может проникать через плазматическую мембрану обратно в кровь и оказывается «запертой» в клетке. Таким образом, глюкозо-6-фосфат является ключевым метаболитом углеводного обмена, на уровне которого осуществляется интеграция различных путей превращения глюкозы в клетке.

В большинстве тканей реакцию фосфорилирования глюкозы катализирует фермент гексокиназа , которая обладает высоким сродством к глюкозе, способна также фосфорилировать фруктозу и маннозу и аллостерически ингибируется избытком глюкозо-6-фосфата. В клетках печени, кроме того, есть фермент глюкокиназа , которая имеет низкое сродство к глюкозе, не ингибируется глюкозо-6-фосфатом и не участвует в фосфорилировании других моносахаридов. Глюкокиназа эффективно функционирует только при высокой концентрации глюкозы в крови. Это способствует усвоению большого количества углеводов, поступающих в печень из кишечника в активную фазу пищеварения.

В следующей реакции глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат (рисунок 15.1 , реакция 2).

Продукт реакции изомеризации подвергается повторному фосфорилированию за счёт АТФ (рисунок 15.1 , реакция 3). Эта реакция - наиболее медленно протекающая реакция гликолиза и, подобно фосфорилированию глюкозы, необратима. Фермент - фосфофруктокиназа - является аллостерическим, активируется АДФ, АМФ, и фруктозо-2,6-бисфосфатом, а ингибируется цитратом и высокой концентрацией АТФ.

На следующем этапе фруктозо-1,6-дифосфат подвергается расщеплению на две фосфотриозы (рисунок 15.1 , реакция 4). Таким образом, химическое соединение, содержащее 6 углеродных атомов, превращается в два, содержащих по 3 атома углерода. Поэтому гликолиз называют дихотомическим путём превращения глюкозы (от слова «дихотомия» - рассечение на две части).

Далее происходит изомеризация триозофосфатов (рисунок 15.1 , реакция 5). В этой реакции диоксиацетонфосфат переходит в глицеральдегид-3-фосфат. Таким образом, в первой стадии гликолиза молекула глюкозы превращается в две молекулы глицеральдегид-3-фосфата. Поэтому в реакциях второй стадии глюкозы будет участвовать по две молекулы каждого субстрата, что необходимо учитывать при расчёте энергетического баланса данного метаболического пути.

Рисунок 15.1. Реакции первой стадии гликолиза.

15.2.3. Вторая стадия гликолиза включает реакции превращения двух молекул глицеральдегид-3-фосфата в две молекулы лактата. На этой стадии гликолиза происходит синтез молекул АТФ.

Глицеральдегид-3-фосфат подвергается дегидрированию при участии НАД-зависимой дегидрогеназы. В этой реакции происходит потребление неорганического фосфата, который включается в состав продукта реакции, содержащего макроэргическую фосфатную связь (рисунок 15.2, реакция 6), а промежуточным донором водорода служит SH-группа в активном центре фермента, которая потом регенерирует.

1,3-Дифосфоглицерат вступает в реакцию первого субстратного фосфорилирования, т.е. не сопряжённого с переносом электронов в дыхательной цепи. В этой реакции осуществляется синтез молекулы АТФ в результате переноса фосфатной группы вместе с макроэргической связью на молекулу АДФ (рисунок 15.2, реакция 7).

В следующей реакции происходит внутримолекулярное перемещение фосфатной группы 3-фосфоглицерата ко 2-му углеродному атому (рисунок 15.2, реакция 8). Тем самым облегчается последующее отщепление молекулы воды, которое приводит к появлению в продукте реакции макроэргической фосфатной связи (рисунок 15.2, реакция 9).

Фосфоенолпируват (ФЕП) вступает в реакцию второго субстратного фосфорилирования, в ходе которого образуется молекула АТФ. В отличие от первого субстратного фосфорилирования, данная реакция является необратимой в условиях клетки (рисунок 15.2, реакция 10). Фермент пируваткиназа существует в двух изоферментных формах. Изофермент, присутствующий в печёночных клетках, аллостерически ингибируется АТФ и активируется фруктозо-1,6-дифосфатом. Изофермент, присутствующий в головном мозге, мышцах и других тканях, не является аллостерическим и не принимает участия в регуляции гликолиза.

В заключительной реакции гликолиза происходит использование НАДН, образовавшегося при дегидрировании глицеральдегид-3-фосфата (см. реакцию 6). При участии НАД-зависимой лактатдегидрогеназы пируват восстанавливается в молочную кислоту (рисунок 15.2, реакция 11). Фермент существует в пяти изоферментных формах, отличающихся сродством к субстрату и распределением в тканях.



Рисунок 15.2.
Реакции второй стадии гликолиза.

Таким образом, в процессе образования лактата из глюкозы в клетке не накапливается НАДН. Это значит, что данный процесс является анаэробным и может протекать без участия кислорода (который является конечным акцептором электронов, передаваемых НАДН в дыхательную цепь). В тканях, функционирующих в условиях гипоксии,

При подсчёте энергетического баланса гликолиза следует учитывать, что каждая из реакций второй стадии этого метаболического пути повторяется дважды. Таким образом, в первой стадии было затрачено 2 молекулы АТФ, а во второй стадии путём субстратного фосфорилирования образовалось 2х2 = 4 молекулы АТФ; следовательно при окислении одной молекулы глюкозы в клетке накапливается 2 молекулы АТФ.

Окисление глюкозы до СО 2 и Н 2 О (аэробный распад). Аэробный распад глюкозы можно выразить суммарным уравнением:

С 6 Н 12 О 6 + 6 О 2 > 6 СО 2 + Н 2 О + 2820 кДж/моль.

Этот процесс включает несколько стадий (рис. 7-33).

Аэробный гликолиз - процесс окисления глюкозы с образованием двух молекул пирувата;

Общий путь катаболизма, включающий превращение пирувата в ацетил-КоА и его дальнейшее окисление в цитратом цикле;

ЦПЭ на кислород, сопряжённая с реакциями дегидрирования, происходящими в процессе распада глюкозы.

В определённых ситуациях обеспечение кислородом тканей может не соответствовать их потребностям. Например, на начальных стадиях интенсивной мышечной работы при стрессе сердечные сокращения могут не достигать нужной частоты, а потребности мышц в кислороде для аэробного распада глюкозы велики. В подобных случаях включается процесс, который протекает без кислорода и заканчивается образованием лактата из пировиноградной кислоты. Этот процесс называют анаэробным распадом, или анаэробным гликолизом. Анаэробный распад глюкозы энергетически малоэффективен, но именно этот процесс может стать единственным источником энергии для мышечной клетки в описанной ситуации. В даньнейшем, когда снабжение мышц кислородом будет достаточным в результате перехода сердца на ускоренный ритм, анаэробный распад переключается на аэробный. Пути катаболизма глюкозы и их энергетический эффект показаны на рис. 7-34.

Б. Аэробный гликолиз

Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.

1. Этапы аэробного гликолиза

В аэробном гликолизе можно выделить 2 этапа.

Подготовительный этап, в ходе которого глюкоза фосфорилируется и расщепляется на две молекулы фосфотриоз. Эта серия реакций протекает с использованием 2 молекул АТФ.

Этап, сопряжённый с синтезом АТФ. В результате этой серии реакций фосфотриозы превращаются в пируват. Энергия, высвобождающаяся на этом этапе, используется для синтеза 10 моль АТФ.

2. Реакции аэробного гликолиза

Превращение глюкозо-6-фосфата в 2 молекулы глицеральдегид-3-фосфата

Глюкозо-6-фосфат, образованный в результате фосфорилирования глюкозы с участием АТФ, в ходе следующей реакции превращается в фруктозо-6-фосфат. Эта обратимая реакция изомеризации протекает под действием фермента глюкозофосфатизомеразы.

Затем следует ещё одна реакция фосфорилирования с использованием фосфатного остатка и энергии АТФ. В ходе этой реакции, катализируемой фосфофруктокиназой, фруктозо-6-фосфат превращается в фруктозо-1,6-бисфосфат. Данная реакция, так же, как гексокиназная, практически необратима, и, кроме того, она наиболее медленная из всех реакций гликолиза. Реакция, катализируемая фосфофруктокиназой, определяет скорость всего гликолиза, поэтому, регулируя активность фосфофруктокиназы, можно изменять скорость катаболизма глюкозы.

Фруктозо-1,6-бисфосфат далее расщепляется на 2 триозофосфата: глицеральдегид-3-фосфат и дигидроксиацетонфосфат. Реакцию катализирует фермент фруктозобисфосфатальдолаза, или просто альдолаза. Этот фермент катализирует как реакцию альдольного расщепления, так и альдольной конденсации, т.е. обратимую реакцию. Продукты реакции альдольного расщепления - изомеры. В последующих реакциях гликолиза используется только глицеральдегид-3-фосфат, поэтому дигидроксиацетонфосфат превращается с участием фермента триозофосфатизомеразы в глицероальдегид-3-фосфат (рис. 7-35).

В описанной серии реакций дважды происходит фосфорилирование с использованием АТФ. Однако расходование двух молекул АТФ (на одну молекулу глюкозы) далее будет компенсировано синтезом большего количества АТФ.

Превращение глицеральдегид-3-фосфата в пируват

Эта часть аэробного гликолиза включает реакции, связанные с синтезом АТФ. Наиболее сложной в данной серии реакций является реакция превращения глицеральдегид-3-фосфата в 1,3-бисфосфоглицерат. Это превращение - первая реакция окисления в ходе гликолиза. Реакцию катализирует глицеральдегид-3-фосфатдегидрогеназа, которая является NAD-зависимым ферментом. Значение данной реакции заключается не только в том, что образуется восстановленный кофермент, окисление которого в дыхательной цепи сопряжено с синтезом АТФ, но также и в том, что свободная энергия окисления концентрируется в макроэргической связи продукта реакции. Глицеральдегид- 3 -фосфатдегидрогеназа содержит в активном центре остаток цистеина, сульфгидрильная группа которого принимает непосредственное участие в катализе. Окисление глицеральдегид-3-фосфата приводит к восстановлению NAD и образованию с участием Н3РО4 высокоэнергетической ангидридной связи в 1,3-бисфосфоглицерате в положении 1. В следующей реакции высокоэнергетический фосфат передаётся на АДФ с образованием АТФ. Фермент, катализирующий это превращение, назван по обратной реакции фосфоглицераткиназой (киназы называются по субстрату, находящемуся в уравнении реакции по одну сторону с АТФ). Данная серия реакций показана на рис. 7-36.

Образование АТФ описанным способом не связано с дыхательной цепью, и его называют субстратным фосфорилированием АДФ. Образованный 3-фосфоглицерат уже не содержит макроэргической связи. В следующих реакциях происходят внутримолекулярные перестройки, смысл которых сводится к тому, что низкоэнергетическийфосфоэфир переходит в соединение, содержащее высокоэнергетический фосфат. Внутримолекулярные преобразования заключаются в переносе фосфатного остатка из положения 3 в фосфоглицерате в положение 2. Затем от образовавшегося 2-фосфоглицерата отщепляется молекула воды при участии фермента енолазы. Название дегидратирующего фермента дано по обратной реакции. В результате реакции образуется замещённый енол - фосфоенолпируват. Образованный фосфоенолпируват - макроэргическое соединение, фосфатная группа которого переносится в следующей реакции на АДФ при участии пируваткиназы (фермент также назван по обратной реакции, в которой происходит фосфорилирование пирувата, хотя подобная реакция в таком виде не имеет места).

Превращение фосфоенолпирувата в пируват - необратимая реакция. Это вторая в ходе гликолиза реакция субстратного фосфорилирования. Образующаяся енольная форма пирувата затем неферментативно переходит в более термодинамически стабильную кетофор-му. Описанная серия реакций представлена на рис. 7-37.

Рис. 7-37. Превращение 3-фосфоглицерата в пируват.

Схема 10 реакций, протекающих при аэробном гликолизе, и дальнейшее окисление пирувата представлены на рис. 7-33.

Окисление цитоплазматического NADH в митохондриалъной дыхательной цепи. Челночные системы

NADH, образующийся при окислении глицеральдегид-3-фосфата в аэробном гликолизе, подвергается окислению путём переноса атомов водорода в митохондриальную дыхательную цепь. Однако цитозольный NADH не способен передавать водород на дыхательную цепь, потому что митоховдриальная мембрана для него непроницаема. Перенос водорода через мембрану происходит с помощью специальных систем, называемых "челночными". В этих системах водород транспортируется через мембрану при участии пар субстратов, связанных соответствующими дегидрогеназами, т.е. с обеих сторон митохондри-альной мембраны находится специфическая дегидрогеназа. Известны 2 челночные системы. В первой из этих систем водород от NADH в цитозоле передаётся на дигидроксиацетонфосфат ферментом глицерол-3-фосфатдегидрогеназой (NAD-зависимый фермент, назван по обратной реакции). Образованный в ходе этой реакции глицерол-3-фосфат, окисляется далее ферментом внутренней мембраны митохондрий - глицерол-3-фосфатдегидрогеназой (FAD-зависимым ферментом). Затем протоны и электроны с FADH 2 переходят на убихинон и далее по ЦПЭ (рис. 7-38).

Глицеролфосфатная челночная система работает в клетках белых мышц и гепатоцитов. Однако в клетках сердечных мышц митохондриальная глицерол-3-фосфатдегидрогеназа отсутствует. Вторая челночная система, в которой участвуют малат, цитозольная и митоховдриальная малат-дегидрогеназы, является более универсальной. В цитоплазме NADH восстанавливает оксалоа-цетат в малат (рис. 7-39, реакция 1), который при участии переносчика проходит в митохондрии, где окисляется в оксалоацетат NAD-зависимой маЛатдегидрогеназой (реакция 2). Восстановленный в ходе этой реакции NAD отдаёт водород в митоховдриальную ЦПЭ. Однако образованный из малата оксалоацетат выйти самостоятельно из митохондрий в цитозоль не может, так как мембрана митохондрий для него непроницаема. Поэтому оксалоацетат превращается в аспартат, который и транспортируется в цитозоль, где снова превращается в оксалоацетат. Превращения оксалоацетата в аспартат и обратно связаны с присоединением и отщеплением аминогруппы (реакции трансаминирования, см. раздел 9). Эта челночная система называется малат-аспартатной (рис. 7-39). Результат её работы - регенерация цитоплазматического NAD + из NADH.

Обе челночные системы существенно отличаются по количеству синтезированного АТФ. В первой системе соотношение Р/О равно 2, так как водород вводится в ЦПЭ на уровне KoQ. Вторая система энергетически более эффективна, так как передаёт водород в ЦПЭ через митохондриальный NAD + и соотношение Р/О близко к 3.

4. Баланс АТФ при аэробном гликолизе и распаде глюкозы до СО2 и Н2О

Выход АТФ при аэробном гликолизе

На образование фруктозо-1,6-бисфосфата из одной молекулы глюкозы требуется 2 молекулы АТФ (реакции 1 и 3 на рис. 7-33). Реакции, связанные с синтезом АТФ, происходят после распада глюкозы на 2 молекулы фосфотриозы, т.е. на втором этапе гликолиза. На этом этапе происходят 2 реакции субстратного фосфорилирования и синтезируются 2 молекулы АТФ (реакции 7 и 10). Кроме того, одна молекула глицеральдегид-3-фосфата дегидрируется (реакция 6), a NADH передаёт водород в митохондриальную ЦПЭ, где синтезируется 3 молекулы АТФ путём окислительного фосфорилирования. В данном случае количество АТФ (3 или 2) зависит от типа челночной системы. Следовательно, окисление до пирувата одной молекулы глицеральдегид-3-фосфата сопряжено с синтезом 5 молекул АТФ. Учитывая, что из глюкозы образуются 2 молекулы фосфотриозы, полученную величину нужно умножить на 2 и затем вычесть 2 молекулы АТФ, затраченные на первом этапе. Таким образом, выход АТФ при аэробном гликолизе составляет (5Ч2) - 2 = 8 АТФ.

Выход АТФ при аэробном распаде глюкозы до конечных продуктов

В результате гликолиза образуется пируват, который далее окисляется до СО 2 и Н 2 О в ОПК, описанном в разделе 6. Теперь можно оценить энергетическую эффективность гликолиза и ОПК, которые вместе составляют процесс аэробного распада глюкозы до конечных продуктов (табл. 7-4).

Таким образом, выход АТФ при окислении 1 моль глюкозы до СО 2 и Н 2 О составляет 38 моль АТФ.

В процессе аэробного распада глюкозы происходят 6 реакций дегидрирования. Одна из них протекает в гликолизе и 5 в ОПК (см. раздел 6). Субстраты для специфических NAD-зависимых дегидрогеназ: глицеральдегид-3-фосфат, жируват, изоцитрат, б-кетоглутарат, малат. Одна реакция дегидрирования в цитратном цикле под действием сукцинатдегидрогеназы происходит с участием кофермента FAD. Общее количество АТФ, синтезированное путём окислительного фофорилирования, составляет 17 моль АТФ на 1 моль глицеральдегидфосфата. К этому необходимо прибавить 3 моль АТФ, синтезированных путём субстратного фосфорилирования (две реакции в гликолизе и одна в цитратном цикле).

Рис. 7-38. Глицерофосфатная челночная система. 1 - глицеральдегид-3-фосфатдегидрогеназа; 2 - глицерол-3-фосфатдегидрогеназа (цитозольный фермент, назван по обратной реакции); 3 - глицерол-3-фосфатдегидрогеназа (митохондриальныи флавиновый фермент).

Таблица 7-4. Этапы аэробного распада глюкозы

Учитывая, что глюкоза распадается на 2 фос-фотриозы и что стехиометрический коэффициент дальнейших превращений равен 2, полученную величину надо умножить на 2, а из результата вычесть 2 моль АТФ, использованные на первом этапе гликолиза.

Основным путем образования энергии в организме является аэробное окисление углеводов. При этом глюкоза в присутствии кислорода окисляется до СО 2 и Н 2 О с выделением большого количества энергии, часть которой идет на синтез 38-39 молекул АТФ.

Аэробный процесс идет по следующей схеме:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6H 2 О + 680 ккал.

Аэробное окисление глюкозы может происходить двумя путями - прямым и непрямым.

При прямом пути окисления глюкозы (синонимы: апотомический или пентозный цикл) происходит последовательное отщепление от молекулы глюкозы каждого из ее 6 атомов углерода с образованием в течение одного цикла одной молекулы СО 2 и Н 2 О. Распад всей молекулы глюкозы происходит в течение 6 повторяющихся циклов. Этот процесс преобладает в эритроцитах, лактирующей молочной железе, коре надпочечников, хрусталике глаза; в печени и почках он является побочным путем распада углеводов.

Особенностью этого процесса является образование пентоз, которые идут на построение РНК и ДНК, выделение энергии (36 молекул АТФ) и накопление НАДФН 2 -кофермента дегидрогеназ, которые участвуют в синтезе холестерина, жирных кислот, активировании фолиевой кислоты и т. д.

В печени и почках преобладает другой путь окисления глюкозы, который называется непрямым, или дихотомическим (см. схему 3). В ходе этого процесса молекула глюкозы предварительно расщепляется на две молекулы фосфотриоз (процесс аналогичен анаэробному распаду углеводов) с последующим образованием пировиноградной кислоты. Пировиноградная кислота в результате окислительного декарбоксилирования превращается в ацетил-КоА


Последний поступает в цикл Креоса, где происходит ею постепенное окисление до СО 2 и Н 2 О и выделение большого количества энергии.

В ходе "непрямого" окисления одной молекулы глюкозы выделяется 680 ккал энергии, из которой образуется 38-39 молекул АТФ (см. схему 3).

В дрожжевых клетках и разных микроорганизмах также происходят процессы распада углеводов, однако конечные продукты различны в зависимости от вида микробов и дрожжей. Так, в дрожжевых клетках происходят процессы образования этилового спирта.

Механизм спиртового брожения глюкозы был вскрыт работами И. М. Манассеиной, Э. Бухнера, А. Н. Лебедева и других авторов. Под действием ферментов дрожжевых клеток происходит ранее рассмотренный процесс распада глюкозы или гликогена до пировиноградной кислоты. Последняя подвергается декарбоксилированию с образованием уксусного альдегида, который восстанавливается в этиловый спирт:


Таким образом, конечными продуктами спиртового брожения являются СО 2 и этиловый спирт.

Молочнокислые бактерии превращают углеводы в молочную кислоту, маслянокислые - в масляную кислоту и т. д.

При изучении брожения Л. Пастер обратил внимание на то, что при избытке кислорода процесс гликолиза тормозится. Этот факт получил название эффекта Пастера . Объяснения ему пока еще нет. Существуют различные гипотезы, но ни одна из них не может с достаточной степенью точности его объяснить.

Исследованиями О. Варбурга было установлено, что в эмбриональной ткани и тканях злокачественных опухолей кислород не тормозит гликолиз. Образование молочной кислоты в присутствии кислорода получило название "аэробный гликолиз" .

Распад углеводов в аэробных условиях может идти прямым (aпотомическим или пентозным) путем и непрямым (дихотомическим) путем.

Дихотомическое (греч. dicha - на две части, tome-сечение)окисление углеводов идет по уравнению:

C 6 H 12 O 6 +6O 2 ® 6 СО 2 +б Н 2 О+686 ккал

Этот путь является основным в образовании энергии. Первые этапы этого пути совпадают с анаэробным окислением глюкозы. Расхождение путей начинается на стадии образования пировиноградной кислоты, которая в животных тканях декарбоксилируется окислительным путем.

Первоначально предполагали, что пировиноградная кислота подвергается окислительному декарбоксилированию с образованием уксусной кислоты по уравнению: СН 3 -СО-СООН + 1 / 2 O 2 СН 3 СООН+СО 2 . Потом было установлено, что уксусная кислота не является промежуточным продуктом при.декарбоксилировании пировиноградной кислоты, и возникло представление, что уксусная кислота существует в «активной» форме. Вскоре было показано, что для утилизации пирувата необходим коэнизм А (КоА). В химическом отношении КоА представляет нуклеотид, в состав которого входит аденозин-3 1 , 5 1 -дифосфат, фосфат, пантотеновая кислота и тиоэтиламин. Коэнзим А участвует в переносе остатка уксусной кислоты - ацетильного радикала (CH 3 CO-) также и других кислотных (ацильных) радикалов.

Окислительное декарбоксилирование пирувата - процеcc многоступенчатый, осуществляется сложной ферментативной системой, в состав которой помимо пируватдекарбоксилазы, тиаминдифосфата и коэнзима А входят дегидрогеназы с коферментом НАД + , и ФАД, липоевая кислота и ионы магния. В результате окисления пировиноградной кислоты образуются молекула aцетил-КоА («активной» формы уксусной кислоты), два атома водорода (в виде НАДН+Н +) и молекула СО 2 .

СН 3 -СО-СООН+НS-КоА+НАД+®СН 3 --С~S-~КоА+С0 2 +НАДН+ H

Ацетил-КоА

Следующий этап непрямого аэробного окисления глюкозы характеризуется полным окислением ацетил-КоА в цикле Кребса до СО 2 и Н 2 О.

ЦИКЛ ДИ- и ТРИКАРБОНОВЫХ КИСЛОТ (КРЕБСА).

Исследования показали, что дальнейшее окисление ацетил-КоА возможно лишь в присутствии небольших количеств какой-либо ди-карбоновой кислоты. Оказалось, что в начале ацетил-коэнзима А конденсируется с щавелевоуксусной кислотой (СООН-СН 2 - СО-СООН) с образованием лимонной (трикарбоновой) кислоты. Лимонная кислота является первым продуктом цикла Кребса, поэтому этот цикл иногда называют лимоннокислым.

Образовавшаяся лимонная кислота подвергается далее ряду сложных превращений. И прежде всего, дегидратированию с образованием цис-аконитовой кислоты. Последняя присоединяет молекулу воды и переходит в изолимонную кислоту. Изолимонная кислота подвергается дегидрированию и превращается в щавелево-янтарную, которая декарбоксилируется с образованием µ-кетоглютаровой. µ-Кетоглютаровая кислота подвергается окислительному декарбоксилированию и одновременно дегидрируется, переходя в сукцинил-КоА. Затем сукцинил-КоА превращается в янтарную кислоту. Янтарная кислота дегидрируется, превращаясь в фумаровую. Фумаровая переходит в яблочную, а из яблочной при ее дегидрировании образуется щавелевоуксусная. На этом цикл замыкается. Многие реакции цикла Кребса легко обратимы. Ферменты, катализирующие реакции цикла Кребса


сосредоточены в митохондриях. Последовательность реакций цикла Кребса последовательно изображена на суммарной схеме (рис. 7.3) .

Из приведенной схемы видно, что в цикле Кребса в результате реакций дегидрирования образуется 4 пары водородных атомов и 2 молекулы СО 2 . Освободившийся в ходе процесса окисления водород поступает в цепь биологического окисления и в конечном итоге окисляется молекулярным кислородом с образованием воды и выделением энергии.

При окислении в цикле ди- и трикарбоновых кислот одной молекулы ацетил-КоА образуется 12 молекул АТФ, из которых одиннадцать возникает путем окислительного фосфорилирования, а одна при субстратном фосфорилировании (при превращении сукцинил-КоА в янтарную кислоту).При окислении большинства субстратов в цепи биологического окисления происходит образование 3-х молекул АТФ, тогда как окисление некоторых из них (например, в случае янтарной кислоты) дает 2 молекулы АТФ. Энергетический баланс анаэробного и аэробного окисления глюкозы представляет следующую картину.

1. Две молекулы АТФ - это чистый прирост АТФ при превращениях глюкозы до пировиноградной кислоты в анаэробной фазе.

Глюкоза+2 НАД + +2 АДФ+2 Фн-® 2 Пируват+2 НАДН+2 АТФ

2. Четыре молекулы АТФ образуются в результате окисления двух молекул НАДН, возникших при дегидрировании двух молекул 3-фосфоглицеринового альдегида (рис. 13). В связи с тем, что эти две молекулы НАДН являются цитоплазматическими, то отдаваемые ими электроны могут включиться в митохондриальную цепь биологического окисления не прямым путем, а с помощью так называемого челночного механизма. Суть этого механизма состоит в том, что сначала цитоплазматический НАДН реагирует с фосфодиоксиацетоном и образует глицерол-3-фосфат.

Фосфодиоксиацетон+НАДН ¾ Глицерол-3-фосфат+НАД +

Г"лицерол-3-фосфат легко проникает через митохондриальную мембрану и окисляется с участием флавинзависимой дегидрогеназы в фосфодиоксиацетон, причем простетическая флавиновая группа восстанавливается.

Глицерол-3-фосфат+Фл. пр. ¾¾® Фосфодиоксиацетон+

4-фл. пр. Н 2 . Фосфодиоксиацетон выходит из митохондрий, а восстановленный флавопротеид (Фл. пр. Н2) передает приобретенные электроны в цепь биологического окисления, обеспечивая окислительное фосфорилирование только двух молекул АДФ.

3. Шесть молекул АТФ возникают в процессе окислительного де-карбоксилирования двух молекул пировиноградной кислоты, образовавшихся в анаэробной.фазе из одной молекулы глюкозы.

4. При полном окислении двух молекул ацетил-КоА в цикле Кребса возникает 24 молекулы АТФ. В итоге полного аэробного окисления одной молекулы глюкозы синтезируется 36 молекул ЛТФ. При анаэробном гликолизе (брожении) на одну молекулу глюкозы образуется всего 2 молекулы АТФ. Таким образом, «выход» энергии, запасаемой в виде АТФ при кислородном распаде глюкозы, в 18 раз больше, чем при анаэробном.

ПЕНТОЗО-ФОСФАТНЫЙ ПУТЬ ОКИСЛЕНИЯ УГЛЕВОДОВ.

Существует еще один путь аэробного окисления углеводов, который имеет значение лишь в некоторых органах и тканях (жи­ровой ткани, печени, эритроцитах, молочной железе, коре надпочечников, половых железах). Этот путь называется пентозофосфатным (пентозным, прямым или гексозомонофосфатным).

В отличие от непрямого (гексозодифосфатного) пути окисления углеводов в пентозном цикле не проходит стадии образования фруктозе-16-дифосфата, фосфотриоз и т. д., т. е. не происходит фосфорилирования глюкозомонофосфата. Последний в пентозном цикле подвергается прямому окислению с образованием в конечном итоге СО 2 и пентозофосфата.

Значение пентозного цикла состоит, во-первых, в том, что является основным поставщиком восстановленного НАДФ + (НАДФН), необходимого для разнообразных синтетических процессов. Во-вторых, этот цикл обеспечивает организм пентозами. В третьих, энергетическая ценность цикла весьма велика - равна 36 мол АТФ.

7.5. ФОТОСИНТЕЗ

Фотосинтез - это синтез органических веществ (прежде всего углеводов) из углекислого газа и воды, происходящий за счет энергии света. Фотосинтез является основным источником образования органических веществ на Земле и единственным источником кислорода.

Процесс фотосинтеза в растениях можно выразить следующим

суммарным уравнением: 6С0 2 +6Н 2 0 ¾® С 6 Н 12 О 6 +6 O 2

хлорофилл

фотосинтез происходит внутри специализированных органелл- пластидах (хлоропластах), которые содержат в себе хлорофилл.

Хлорофилл - сложное гетероциклическое соединение, содержащее четыре перрольных кольца, образующих порфириновое ядро. Перрольные кольца связаны двумя основными и двумя дополнительными валентностями с атомом магния. Хлорофилл благодаря наличию в его структуре сопряжённых двойных связей способен поглощать световую энергию, переходя в активное состояние. Аккумулирование солнечной энергии хлорофиллом является начальным этапом фотосинтеза, который можно изобразить следующим образом:

Хл + hv -® Хл +

Хлоро- Квант Хлорофилл

филл света возбужденный

На втором этапе фотосинтеза возбужденный хлорофилл, обогащенный энергией за счет поглощения светового фотона, отдаёт энергию на разложение воды (фотолиз воды). В результате образуются активные радикалы Н и ОН. Радикалы ОН дают перекись (ОН) 2 , распад которой приводит к образованию кислорода.

Хл + +Н 2 0 -® Хл+Н+ОН

ОН ¾® (ОН) 2 --® H 2 O+ 1 / 2 O 2

Следующий (третий) этап состоит в переносе водорода воды

через цепь переносчиков на НАДФ с образованием НАДФН. Одновременно происходит за счет переноса электронов, индуцируемого светом, синтез АТФ из АДФ и неорганического фосфата, т. е так называемое фотосинтетическое фосфорилирование.

Разобранные выше этапы являются световой фазой фотосинтеза. В реакциях этой фазы принимает участие поглощенная хлорофиллом световая энергия. Световая фаза приводит к образованию молекулярного кислорода, НАДФН и АТФ.

Следующая фаза фотосинтеза - темновая. Реакции в этой фазе происходят без участия света. В темновой фазе фотосинтеза НАДФН и АТФ используются для восстановления углекислого газа до углевода.

ГЛАВА 8. ОБМЕН ЛИПИДОВ

8.1. РОЛЬ ЛИПИДОВ В ПИТАНИИ

Жиры, так же, как и углеводы, являются важным источником энергии. Кроме того, они выполняют специфические функции благодаря содержащимся в них незаменимым ненасыщенным кислотам: линолевой, линоленовой, арахидоновой, называемых витамином F. Содержатся эти кислоты в основном в растительных маслах. Поэтому растительные масла являются незаменимой составной частью пищи. В жирах содержатся жирорастворимые витамины - А, Д, К, Е, необходимые для нормального развития организма. Богаты витаминами коровье масло, особенно из молока летнего периода, рыбий жир, жир внутренних органов.

Вышесказанное дает основание заключить, что жиры являются неотъемлемой составной частью пищи. Жиры не могут быть заменены другими веществами, хотя и равноценными по калорийности. Суточная потребность человека в жирах составляет в среднем 90 г. При тяжелой физической работе содержание жира в суточном рационе должно быть увеличено. Однако чрезмерное потребление жира ведет к нарушению жирового обмена, к заболеваниям печени.

8.2. ПЕРЕВАРИВАНИЕ ЖИРОВ В ЖЕЛУДОЧНО-КИШЕЧНОМ ТРАКТЕ

Расщепление жира на глицерин и высшие жирные кислоты осуществляется под влиянием фермента липазы. Для воздействия липазы на жир необходимо его предварительное эмульгирование, достигаемое путем перемешивания в кишечнике пищевой кашицы с желчью.

В ротовой полости жиры не подвергаются химическим изменениям. В желудке присутствует липаза, однако ее активность невелика из-за отсутствия условий, необходимых для эмульгирования жира. В желудке гидролизуются только эмульгированные жиры - жиры молока и яичного желтка. В основном переваривание жира происходит в кишечнике и в первую очередь в двенадцатиперстной кишке, куда по протокам попадают вместе с желчью соли желчных кислот, обладающие мощным эмульгирующим действием.

Желчные кислоты образуют тончайшую пленку на жировых каплях, которая препятствует слиянию отдельных капелекжира вболее крупные капли. Это приводит к резкому увеличению поверхности соприкосновения жира с ферментом липазой и, следовательно, скорости гидролитического распада жира. К желчным кислотам относятся холевая, дезоксихолевая и другие. По своему строению они близки к холестерину. В желчи эти кислоты образуют с глицином (гликоколлом) или таурином парные соединения - глико- или таурохолевую, глико- или тауродезоксихолевую и другие желчные кислоты, присутствующие в виде натриевых солей.

В клетках кишечного эпителия из продуктов гидролиза пищевых жиров вновь ресинтезируются жиры, или липоиды, специфичные для данного вида животных. Синтезированные липиды транспортируются в жировые депо. При необходимости из жировых депо жиры могут переходить в кровь и использоваться тканями в качестве энергетического материала.

МЕХАНИЗМ ОКИСЛЕНИЯ НЕЙТРАЛЬНОГО ЖИРА В ТКАНЯХ

Поступивший в клетки нейтральный жир под действием тканевых липаз расщепляется на глицерин и высшие жирные кислоты. В дальнейшем жирные кислоты и глицерин окисляются в тканях на СО 2 и H 2 O, при этом освобождающаяся энергия накапливается в макроэргических связях АТФ.

ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ В ТКАНЯХ. В основе современных представлений о распаде жирных кислот в тканях лежит теория b-окисления, выдвинутая впервые Кноопом в 1904 г. Согласно этой теории, окисление жирных кислот происходит у углеродного атома, находящегося в b-положении по отношению к карбоксильной группе, с последующим разрывом углеродной цепочки жирной кислоты между a- и b-углеродными атомами. В дальнейшем эта теория была уточнена и дополнена.

В настоящее время установлено, что окислению жирных кислот в тканях предшествует их активация при участии коэнзима А и АТФ. Этот процесс катализируется ферментом тиокиназой.


R-СН 2 -СООН-+НS-КоА+АТФ

->R-СН 2 -С~S-КоА+АМФ+пирофосфат

Ацилкофермента А

Активированная жирная кислота (ацилкофермента А) подвергается дегидрированию, в результате чего возникает двойная связь между a- и b-атомами углерода. Этот процесс протекает с участием ацилдегидрогеназ, которые в качестве простетической группы содержат ФАД. Затем к ненасыщенной кислоте (a, b-не насыщенному производному ацил-КоА) присоединяется молекула воды и образуется b-гидроксикислота (b-гидроксиацил-КоА) . Далее снова происходит процесс дегидрирования с образованием b-кетокислоты (b-кетоацил-КоА). Этот процесс катализируется ацилдегидрогеназами, коферментом которых является НАД+.И на последнем этапе b-кетоацил-КоА, взаимодействуя со свободным КоА, расщепляется на ацетил-КоА и ацил-КоА. Последний укорочен по сравнению с первоначальным на два углерода.

Образовавшийся на последнем этапе ацетил-КоА сгорает в лимоннокислом цикле до СО 2 и H 2 O. Оставшийся ацил-КоА подвергается далее аналогичному превращению до полного окисления. Полное окисление насыщенной жирной кислоты приводит к высвобождению значительного количества энергии. Например, при полном окислении пальмитиновой кислоты образуется 131 молекула АТФ.

На основании современных представлений весь ход процесса b-окисления насыщенных жирных кислот можно изобразить следующим образом:

R-СН 2 - СН 2 - СН 2 -С~S-КоА

R-СН 2 - СН= СН-С~SKоА+ФАДН 2

R-СН 2 - СН- СН 2 -С~S-КоА

÷ -2H, НАД +

R-СН 2 - С- СН 2 -С~S-КоА+ НАД + +H +

R-СН 2 - С ~S-КоA+ СН 3 - С ~S-КоА

Ацилкофермента А Ацетилкофермента А

Окисление ненасыщенных жирных кислот в принципе может происходить так же, как и окисление насыщенных жирных кислот. Однако их окисление требует специального дополнительного набора ферментов. Процесс b-окисления жирных кислот происходит в митохондриях.

ОКИСЛЕНИЕ ГЛИЦЕРИНА. Началом окисления глицерина является его фосфорилирование с участием фосфотрансферазы. Донором фосфатного остатка является АТФ. В результате этой реакции образуется глицерофосфат.

÷ фосфотранс- ÷

CHOH + АТФ ¾¾¾® CHOH +АДФ

÷ фераза ÷ OH

Глицерин Глицерофосфат

Затем глицерофосфат подвергается окислению с образованием фосфоглицеринового альдегида.

CHOH ¾¾® CHOH +H 2 O

÷ OH + 1 / 2 O 2 ÷ OH

CH 2 O ¾Р.=O CH 2 O ¾Р.=O

Фосфоглицериновый

альдегид

Дальнейшее окисление фосфоглицеринового альдегида осуществляется так же, как и при распаде углеводов.

ГЛАВА 9. ОБМЕН БЕЛКОВ

9.1. РОЛЬ БЕЛКОВ В ПИТАНИИ

Белки имеют особое значение в питании человека и животных. С белками связано осуществление основных проявлений жизни. Одной из важных функций белков является их пластическая рольвоспроизводства основных структурных элементов клетки. Эта функция белка незаменима и превосходит их значение как источника энергии. В организме почти нет белковых резервов, поэтому белки являются совершенно незаменимыми в ежедневном питании. Белковое голодание приводит к тяжелым расстройствам в организме. Особенно чувствителен к недостатку белка растущий организм. Для возмещения ежедневных потерь организм человека требует 11-13 граммов белка на килограмм веса

9.2. БАЛАНС АЗОТА И АЗОТИСТОЕ РАВНОВЕСИЕ

В связи с тем, что белки представляют собой азотосодержащие вещества, то для изучения белкового обмена большое значение имеет определение азотистого баланса, т. е. разницы между количеством азота, поступившего в организм с пищей, и количеством азота, выведенного из организма. Обычно в здоровом организме устанавливается азотистое равновесие, при котором азота выводится ровно столько, сколько его поступает с пищей.

При положительном азотистом балансе происходит задержка азота в организме, т. е. выводится азота меньше, чем его вводится. Положительный азотистый баланс характерен для молодого, интенсивно растущего организма, а также в случае беременности. При отрицательном азотистом балансе азота выводится больше, чем поступает. Это наблюдается при белковом голодании, при различных заболеваниях, связанных с усиленным распадом белка в организме.

9.3. РАСПАД БЕЛКОВ В ЖЕЛУДОЧНО-КИШЕЧНОМ ТРАКТЕ

Распад белков происходит при участии протеолитических ферментов, расщепляющих пептидные связи. Переваривание белков начинается в желудке под влиянием ферментов желудочного сока. Основным ферментом желудочного сока является пепсин, который выделяется в неактивной форме в виде пепсиногена. Пепсиноген активируется соляной кислотой. Оптимум рН для пепсина лежит в пределах 1,5-2. В результате каталитического действия пепсина в желудке образуются пептоны, построенные из достаточно длинных полипептидов. Расщепление под влиянием пепсина может сопровождаться также появлением свободных аминокислот.

Пептоны и нерасщепленные белки поступают в кишечник, где подвергаются действию ферментов поджелудочной железы (трипсина и химотрипсина), относящихся, как и пепсин, к протеиназам. Трипсин выделяется соком поджелудочной железы в неактивной форме, в виде трипсиногена. Последний активируется ферментом эктерокиназой кишечного сока. Оптимум рН для трипсина равен 7-8. Неактивной формой химотрипсина является химотрипсиноген, который активируется трипсином.

Полипептиды, три- и дипептиды, образовавшиеся в результате действия на белки пепсина, трипсина, химотрипсина, подвергаются дальнейшему расщеплению в кишечнике под влиянием ферментов кишечного сока - пептидаз (карбоксипептидазы, аминопептидазы, дипептидаз). В результате последовательного действия всех вышеперечисленных ферментов пищеварительного тракта белковые вещества распадаются до аминокислот, которые всасываются в кровь через стенку кишечника.

9.4. КАТАБОЛИЗМ БЕЛКОВ И АМИНОКИСЛОТ В ТКАНЯХ

Наряду с синтезом в клетках тканей идет постоянный гидролитический распад белков, который осуществляется с участием протеолитических ферментов тканей – катепсинов. Катепсины относятся к классу гидролаз. По своему действию сходны с пепсином, трипсином и пептидазами. Внутриклеточный распад аминокислот не использованных для синтеза белка, в основном происходит путем дезаминирования и декарбоксилирования.

ДЕЗАМИНИРОВАНИЕ АМИНОКИСЛОТ.

Этот процесс заключается в отщеплении аминогруппы от аминокислоты в виде аммиака. Существует несколько путей дезаминирования: восстановительное, окислительное, гидролитическое и внутримолекулярное.

Основным путём дезаминирования является окислительное дезаминирование, суммарное уравнение которого выглядит так:

R-CH-СOOH + ¾¾ ® R¾C¾- СOOH +NH 3

Аминокислота Кетокислота

Окислительное дезаминирование осуществляется в две стадии. Сначала аминокислота при участии дегидрогеназ окисляется в иминокислоту.

÷ НАД + (ФМН) дегидро- ÷

CH¾ NH 2 ¾¾¾¾¾¾¾¾¾® C=NH+НАДН (ФМНН 2)

÷ геназа, -2 H ÷

Аминокислота Иминокислота

Водород НАДН (или ФМНН 2) через переносчики перейдет на кислород, образуя воду. Вторым этапом является гидролитический распад иминокислоты на кетокислоту и аммиак.

C= NH + H 2 O ¾¾® C=O + NH 3

Иминокислота Кетокислота

ОБЕЗВРЕЖИВАНИЕ АММИАКА, СИНТЕЗ МОЧЕВИНЫ.Аммиак является ядовитым веществом для живых клеток. Основной путь обезвреживания аммиака в организме связан с синтезом мочевины. Теория синтеза мочевины окончательно была сформулирована Кребсом. Однако М. В. Ненцкий и И. П. Павлов впервые обратили внимание на важнейшую роль печени в этом процессе. Сейчас доказано, что синтез мочевины в основном происходит митохондриях клеток печени в результате кругового процесса, требующего небольшого количества орнитина, получившего название орнитинового цикла.

Промежуточным продуктом этого цикла является карбамилфосфат, на синтез которого требуется две молекулы АТФ. Затем карбаминовая

карбамилфос- ½

NH 3 +CO 2 +Н 2 O+2АТФ--¾¾®NH 2 ¾CO¾O~P=O+2АДФ+ НзРО 4

фатсинтетаза ½

Карбамилфосфат

группировка переносится с карбамилфосфата на орнитин, в результате образуется цитруллин. Последний вступает в реакцию с аспарагиновой кислотой и образует аргинин. Аргинин гидролизуется ферментом аргиназой с образованием мочевины и орнитина. Немаловажное значение в нейтрализации аммиака отводится образованию амидов - прежде всего, глютамина из глютаминовой кислоты, а также аспарагина из аспарагиновой кислоты. Синтез амидов сопряжен с распадом АТФ.

(CH 2) 2 (CH 2) 2

÷ Глютамин ÷

CH¾ NH 2 + NH 3 +АТФ ¾¾® CH¾ NH 2 +АДФ+H 3 PO 4

÷ синтетаза ÷

Глютаминовая Глютамин

ДЕКАРБОКСИЛИРОВАНИЕ АМИНОКИСЛОТ. Декарбоксилирование является весьма важным процессом диссимиляции аминокислот. Этот процесс сопровождается образованием углекислого газа и соответствующего амина.

R-CH-COOH ¾¾¾® R-CH 2 + CO 2

Аминокислота Амин

При декарбоксилировании некоторых аминокислот образуется ряд физиологически активных веществ. Так, декарбоксилирование глютаминовой кислоты приводит к образованию g-аминомасляной кислоты, играющей большую роль в процессах торможения функции нервных клеток.

НООС-СН 2 -СН 2 -СН-СООН®НООС-СН 2 -СН 2 -СН 2 +СО 2

Глютаминовая кислота g -Аминомасляная кислота

С.Р.Мардашев показал, что при декарбоксилировании аспарагиновой кислоты некоторыми бактериями наряду с углекислым газом образуется новая аминокислота - a-аланин.

Некоторые амины, образующиеся при декарбоксилировании аминокислот под действием микрофлоры кишечника, известны как продукты гнилостного разложения белка. Например, при декабоксилировании лизина образуется кадаверин. Аналогичным образом из диаминокислоты орнитина

CH 2 -CH 2 -CH 2 -CH 2 -CH-COOH-® СН 2 -СН 2 -СН 2 -СН 2 -СН 2

NH 2 NН 2 NH 2 NH 2 Лизин Кадаверин

получается амин-путресцин. При декарбоксилировании триптофана образуется индолэтиламин, который при дальнейшем гнилостном распаде дает скатол и индол. Из тирозина образуется фенол и крезол.

Скатол, индол, фенол, крезол являются ядовитыми вещества. Их обезвреживание происходит в печени путем образования неядовитых парных соединений с серной кислотой или с глюкуроновой кислотой. Ядовитость путресцина и кадаверина незначительна. Эти соединения выводятся с мочой в неизменном виде.

9.5. БИОХИМИЯ СИНТЕЗА АМИНОКИСЛОТ И БЕЛКОВ

СИНТЕЗ АМИНОКИСЛОТ. Синтез аминокислот в организме может осуществляться путем восстановительного аминирования

кетокислот и в результате процесса переаминирования между кето- и аминокислотами.

Восстановительное аминирование кетокислот является главным путем синтеза аминокислот и представляет собой реакцию, обратную реакции окислительного дезаминирования. Восстановительное аминирование включает в себя две стадии. Первая стадия состоит в присоединении аммиака к кетокислоте с образованием иминокислоты. Затем иминокислота восстанавливается НАДН в аминокислоту. Например:

CH 3 -CO-COOH+NН 3 +2H-®СН 3 -СН- COOH +Н 2 O

Пировиноградная кислота a-Аланин

1. CH 3 -CO-COOH+NН 3 -®СН 3 -С- COOH +Н

Иминокислота

2. CH 3 -C-COOH+2 Н-®СН 3 -СH- COOH

Особенно легко аммиак реагирует с a-кетоглютаровой кислотой, в результате чего образуется глютаминовая кислота.

Реакция переаминирования (трансаминирования) была открыта в 1937 г. отечественными учеными А.Е.Браунштейном и М.Г. Крицман. Эта реакция заключается в переносе аминогруппы с аминокислоты на кетокислоту и осуществляется с участием ферментов - аминотрансфераз, коферментом которых является фосфопиридоксаль (фосфорное производное пиридоксина - витамина B 6).

На первом этапе процесса переаминирования происходит

CH 3 COOH CH 3 COOH

ô ô аминотранс- ÷ ÷


CH- NН 2 + CH 2 С =О + CH 2

ô ô фераза ÷ ÷

COOH CH 2 COOH CH 2

Аланин -Кетоглютаровая Пировино- Глютами-

кислота градная новая

кислота кислота

перенос аминогруппы на кофермент. Второй этап состоит в переносе

аминогруппы с кофермента на соответствующую кетокислоту. Реакция протекает без промежуточного образования аммиака. Вышесказанное можно иллюстрировать примером образования глютаминовой кислоты путем реакции переаминирования.

БИОСИНТЕЗ БЕЛКА И РОЛЬ НУКЛЕИНОВЫХ КИСЛОТ В ЭТОМ ПРОЦЕССЕ.

Белки различаются между собой природой и последовательностью чередования аминокислот, входящих в их состав. Последовательность включения определенного числа аминокислот в синтезируемую полипептидную цепь осуществляется в соответствии с информацией, заложенной в ДНК. Установлена прямая связь между интенсивностью синтеза белка в клетках и тканях с содержанием в них ДНК и РНК. Экспериментально доказано, что ферментативное расщепление РНК рибонуклеазой и ДНК-дезоксирибонуклеазой подавляет или вовсе прекращает биосинтез белка.

Процесс биосинтеза белка происходит в мельчайших субклеточных структурах- рибосомах. Его можно условно разделить на три этапа. На первом этапе происходит синтез информационной РНК на ДНК и перенос ее к рибосомам (процесс транскрипции -«переписывания»). На этом этапе происходит передача информации о строении синтезируемого белка. Второй этап включает в себя активацию аминокислот, присоединение их к специфическим транспортным РНК и перенос к рибосомам (рекогниция - «узнавание»). Третий этап - собственно рибосомальный синтез белка (трансляция), который состоит в переводе нуклеотидной последовательности и-РНК в аминокислотную последовательность полипептидной цепи.

I этап. Синтез и-РНК происходит в ядре на молекуле ДНК при участии фермента РНК-полимеразы. В определенный момент нити ДНК расходятся и к одной из нитей присоединяются свободные рибонуклеозидфосфаты (АТФ, ГТФ, ЦТФ, УТФ) к соответствующим основаниям в цепочке ДНК по принципу комплементарности. В результате молекула и-РНК в точности повторяет чередование азотистых оснований ДНК и является переносчиком генетической информации. Синтезированная и-РНК выходит из ядра в цитоплазму клетки, где соединяется с рибосомальной РНК (р-рнк).

Установлено, что одна аминокислота закодирована в и-РНК сочетанием трех нуклеотидов -триплетом (кодоном). Так, триплет УУУ (три урацила) определяет включение в полипептидную цепь фенилаланина, а ГАУ (гуанин-аденин-урацил) соответствует аспарагиновой кислоте и т. д.

II этап. Вначале происходит активация аминокислот при участии АТФ и специфического фермента. В результате образуется аминоациладенилат.

АТФ + COOH-CH-R фермент АМФ~СО-СН-R+ H 4 P 2 O 7

÷ ¾¾¾¾® ÷

Аминокислота Аминоациладенилат Пирофосфат

Затем аминоацильная группа с АМФ переносится на транспорт-

тную РНК.


АМФ~СО-СН-R + т-РНК т-phk~co-ch-r + АМФ

Аминоацил т-РНК

Такой комплекс т-РНК с аминокислотой переносится к рибосомам. Для каждой аминокислоты имеется своя т-РНК. В молекуле т-РНК, имеющей конформацию клеверного листа, содержится два важнейших участка. Один из них является акцептором аминоацильной группы, переносимой от аминоациладенилата. Другой участок представляет собой триплет, который выполняет функцию антикодона, т. е. является специфическим кодоном комплементарным соответствующему кодону и-РНК.

III этап - рибосомный этап синтеза белка. Молекулы т-РНК с соответствующими аминокислотами подходят к рибосоме и присоединяются своими антикодонами к соответствующим кодонам и-РНК. Образование пептидной связи происходит при участии фермента пептид-синтетазы. После каждого образования пептидной связи происходит перемещение на один триплет. По мере продвижения рибосомы вдоль и-РНК «считывается» заключенная в ней информация и синтезируются соответствующие полипептидные цепи. В дальнейшем полипептидные цепи приобретают дисульфидные и водородные мостики, что приводит к формированию вторичной и третичной структуры белка.

Синтез белка схематически изображен на рис. 16.

ОБМЕН НУКЛЕОПРОТЕИД0В

Нуклеопротеиды в пищеварительном тракте под действием пепсина и соляной кислоты, а также трипсина, распадаются на простой белок и нуклеиновые кислоты. В ддальнейшем белок подвергается обычным превращениям. Расщепление нуклеиновых кислот происходит в тонком кишечнике под влиянием нуклеазы и дезоксирибонуклеазы. В результате действия нуклеаз нуклеиновые кислоты, распадаются на мононуклеотиды. В свою очередь нуклеотиды под действием нуклеотидаз распадаются на нуклеозид и фосфорную кислоту. В виде нуклеотидов и нуклеозидов и происходит всасывание продуктов гидролиза нуклеиновых кислот.

Нуклеиновые кислоты могут также распадаться в клетках тканей под действием тканевых нуклеаз и тканевых нуклеотидаз. Присутствующие в тканях специфические нуклеозидазы подвергают дальнейшему гидролитическому распаду нуклеозиды до пентоз и азотистых оснований.

Конечные продукты превращений пуриновых оснований у раз личных видов животных неодинаковы. У человека и человекообразных обезьян конечным продуктом обмена пуринов является мочевая кислота. Мочевая кислота поступает в кровоток и выводится почками. У большинства млекопитающих мочевая кислота d превращается в аллантоин. Пуриновые основания прежде всего подвергаются дезаминированию. При дезаминировании аденина образуется гипоксантин, который окисляется в ксантин. Гуанин превращается сразу в ксантин. Далее ксантин окисляется в мочевую кислоту, а последняя - в аллантоин. При таком распаде сохраняется пуриновое ядро.

H 2 O Гипосантин

Аденин ¾¾¾® ÷

÷ + H 2 O Мочевая

H 2 O ¯ ¾¾ ® кислота ¾¾ ® Аллантоин

Гуанин ¾¾® Ксантин -2H

Отличительной чертой распада пиримидиновых оснований в тканях многих животных является разрыв в конечном итоге пири-мидинового кольца. Конечными продуктами распада цитозина и урацила является аминокислота b-аланин и углекислый газ, а тимина - b-аминоизомасляная кислота, аммиак и углекислый газ. Продукты распада пиримидиновых оснований выводятся с мочой.

Синтез пуринового кольца сложен, хотя и идет из весьма простых веществ –CO 2 , глицина, аспарагиновой кислоты, муравьиной кислоты и глютамина. Наряду с этими веществами в его построение вовлекается рибозо-5-фосфат. В результате образуются не свободные пуриновые основания, а мононуклеотиды.

Исходным веществом для синтеза пиримидиновых нуклеотидов является карбамилфосфат. Последний образуется из NH 3 и СО 2 при участии АТФ. Далее карбамил переносится на аминогрyппу аспарагиновой кислоты, в результате чего образуется кар-бамиласпарагиновая кислота и Н 3 Р0 4 . Сближение аминной и карбоксильной групп в молекуле карбамиласпарагиновой кислоты приводит к замыканию кольца с образованием дигидрооротовой кислоты. Последняя окисляется с участием флавинзависимых дегидрогеназ в оротовую кислоту.

÷ -Н 3 РО 4 -H 2 O

NH 2 -CO -O~Р.=O + Аспарагиновая ¾¾ ® Карбамиласпара- ¾ ®

÷ кислота гиновая кислота

(Карбамилфосфат)

Дигидрооротовая -2H ÷ ÷÷

¾® кислота ¾® O=C C-COOH

Оротовая кислота

Оротовая кислота является предшественником всех пиримидиновых оснований. Оротовая кислота вступает в соединение с рибозо-5-фосфатом, и образуется пиримидиновый нуклеотид оротидин-5-фосфат. Его декарбоксилирование приводит к возникновению уриди-ловой кислоты.

В основе синтеза нуклеиновых кислот (ДНК и РНК) лежат два принципа: матричный принцип и принцип комплементарности.

ГЛАВА 10. ВЗАИМОСВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ ЖИРОВ И УГЛЕВОДОВ

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий