Активный мембранный транспорт. Транспорт веществ через мембрану. Активный и пассивный транспорт веществ через мембрану. Основные виды транспорта

Обмен клетки с внешней средой различными веществами и энергией является жизненно необходимым условием ее существования.

Для поддержания постоянства химического состава и свойств цитоплазмы в условиях, когда имеют место существенные различия химического состава и свойств внешней среды и цитоплазмы клетки, должны существовать специальные транспортные механизмы , избирательно перемещающие вещества через .

В частности, клетки должны располагать механизмами доставки кислорода и питательных веществ из среды существования и удаления в нее метаболитов. Градиенты концентраций различных веществ существуют не только между клеткой и внешней средой, но и между органеллами клетки и цитоплазмой, и транспортные потоки веществ наблюдаются между различными отсеками клетки.

Особое значение для восприятия и передачи информационных сигналов имеет поддержание трансмембранной разности концентраций минеральных ионов Na + , К + , Са 2+ . Клетка затрачивает на поддержание концентрационных градиентов этих ионов существенную часть своей метаболической энергии. Запасаемая в ионных градиентах энергия электрохимических потенциалов обеспечивает постоянную готовность плазматической мембраны клетки отвечать на воздействие раздражителей. Поступление кальция в цитоплазму из межклеточной среды или из клеточных органелл обеспечивает ответ многих клеток на гормональные сигналы, контролирует выделение нейромедиаторов в , запускает .

Рис. Классификация типов транспорта

Для понимания механизмов перехода веществ через клеточные мембраны необходимо учитывать как свойства этих веществ, так и свойства мембран. Транспортируемые вещества различаются молекулярной массой, переносимым зарядом, растворимостью в воде, липидах и рядом других свойств. Плазматическая и другие мембраны представлены обширными участками липидов, через которые легко диффундируют жирорастворимые неполярные вещества и не проходят вода и водорастворимые вещества полярной природы. Для трансмембранного перемещения этих веществ необходимо наличие специальных каналов в клеточных мембранах. Транспорт молекул полярных веществ затрудняется при увеличении их размеров и заряда (в этом случае требуются дополнительные механизмы переноса). Перенос веществ против концентрационных и других градиентов также требует участия специальных переносчиков и затрат энергии (рис. 1).

Рис. 1. Простая, облегченная диффузия и активный транспорт веществ через мембраны клеток

Для трансмембранного перемещения высокомолекулярных соединений, надмолекулярных частиц и компонентов клеток, не способных проникать через мембранные каналы, используются особые механизмы — фагоцитоз, пиноцитоз, экзоцитоз, перенос через межклеточные пространства. Таким образом, трансмембранное перемещение различных веществ может осуществляться с использованием разных способов, которые принято подразделять по признакам участия в них специальных переносчиков и энергозатратам. Существуют пассивный и активный транспорт через мембраны клетки.

Пассивный транспорт — перенос веществ через биомембрану по градиенту (концентрационный, осмотический, гидродинамический и т.д.) и без расхода энергии.

Активный транспорт — перенос веществ через биомембрану против градиента и с расходом энергии. У человека 30- 40 % всей энергии, образующейся в ходе метаболических реакций, расходуется на этот вид транспорта. В почках 70-80 % потребляемого кислорода идет на активный транспорт.

Пассивный транспорт веществ

Под пассивным транспортом понимают перенос вещества через мембраны по различного рода градиентам (электрохимического потенциала, концентрации вещества, электрического поля, осмотического давления и др.), не требующий непосредственной затраты энергии на его осуществление. Пассивный транспорт веществ может происходить посредством простой и облегченной диффузии. Известно, что под диффузией понимают хаотические перемещения частиц вещества в различных средах, обусловленные энергией его тепловых колебаний.

Если молекула вещества электронейтральна, то направление диффузии этого вещества будет определяться лишь разностью (градиентом) концентраций вещества в средах, разделенных мембраной, например вне и внутри клетки или между ее отсеками. Если молекула, ионы вещества несут на себе электрический заряд, то на диффузию будут оказывать влияние как разность концентраций, величина заряда этого вещества, так и наличие и знак зарядов на обеих сторонах мембраны. Алгебраическая сумма сил концентрационного и электрического градиентов на мембране определяет величину электрохимического градиента.

Простая диффузия осуществляется за счет наличия градиентов концентрации определенного вещества, электрического заряда или осмотического давления между сторонами клеточной мембраны. Например, среднее содержание ионов Na+ в плазме крови составляет 140 мМ/л, а в эритроцитах — приблизительно в 12 раз меньше. Эта разность концентрации (градиент) создает движущую силу, которая обеспечивает переход натрия из плазмы в эритроциты. Однако скорость такого перехода малая, так как мембрана имеет очень низкую проницаемость для ионов Na + . Гораздо больше проницаемость этой мембраны для калия. На процессы простой диффузии не затрачивается энергия клеточного метаболизма.

Скорость простой диффузии описывается уравнением Фика:

dm/dt = -kSΔC/x,

гдеdm / dt - количество вещества, диффундирующее за единицу времени; к - коэффициент диффузии, характеризующий проницаемость мембраны для диффундирующего вещества;S - площадь поверхности диффузии; ΔС — разность концентраций вещества по обе стороны мембраны; х — расстояние между точками диффузии.

Из анализа уравнения диффузии ясно, что скорость простой диффузии прямо пропорциональна градиенту концентрации вещества между сторонами мембраны, проницаемости мембраны для данного вещества, площади поверхности диффузии.

Очевидно, что наиболее легко перемещаться через мембрану путем диффузии будут те вещества, диффузия которых осуществляется и по градиенту концентраций, и по градиенту электрического поля. Однако важным условием для диффузии веществ через мембраны являются физические свойства мембраны и, в частности, ее проницаемость для вещества. Например, ионы Na+, концентрация которого выше вне клетки, чем внутри ее, а внутренняя поверхность плазматической мембраны заряжена отрицательно, должны были бы легко диффундировать внутрь клетки. Однако скорость диффузии ионов Na+ через плазматическую мембрану клетки в покое ниже, чем ионов К+, который диффундирует по концентрационному градиенту из клетки, так как проницаемость мембраны в условиях покоя для ионов К+ выше, чем для ионов Na+.

Поскольку углеводородные радикалы фосфолипидов, формирующих бислой мембраны, обладают гидрофобными свойствами, то через мембрану могут легко диффундировать вещества гидрофобной природы, в частности легко растворимые в липидах (стероидные, тиреоидные гормоны, некоторые наркотические вещества и др.). Низкомолекулярные вещества гидрофильной природы, минеральные ионы диффундируют через пассивные ионные каналы мембран, формируемые каналообразующими белковыми молекулами, и, возможно, через дефекты упаковки в мембране фосфолииидных молекул, возникающие и исчезающие в мембране в результате тепловых флуктуаций.

Диффузия веществ в тканях может осуществляться не только через мембраны клеток, но и через другие морфологические структуры, например из слюны в дентинную ткань зуба через его эмаль. При этом условия для осуществления диффузии остаются теми же, что и через клеточные мембраны. Например, для диффузии кислорода, глюкозы, минеральных ионов из слюны в ткани зуба их концентрация в слюне должна превышать концентрацию в тканях зуба.

В нормальных условиях проходить в значительных количествах через фосфолипидный бислой путем простой диффузии могут неполярные и небольшие по размерам электронейтральные полярные молекулы. Транспорт существенных количеств других полярных молекул осуществляется белками-переносчиками. Если для трансмембранного перехода вещества необходимо участие переносчика, то вместо термина «диффузия» часто используют термин транспорт вещества через мембрану.

Облегченная диффузии , так же, как и простая «диффузия» вещества, осуществляется по градиенту его концентрации, но в отличие от простой диффузии в переносе вещества через мембрану участвует специфическая белковая молекула — переносчик (рис. 2).

Облегченная диффузия — это вид пассивного переноса ионов через биологические мембраны, который осуществляется по градиенту концентрации с помощью переносчика.

Перенос вещества с помощью белка-переносчика (транспортера) основан на способности этой белковой молекулы встраиваться в мембрану, пронизывая ее и формируя каналы, заполненные водой. Переносчик может обратимо связываться с переносимым веществом и при этом обратимо изменять свою конформацию.

Предполагается, что белок-переносчик способен находиться в двух конформационных состояниях. Например, в состоянии а этот белок обладает сродством с переносимым веществом, его участки для связывания вещества повернуты внутрь и он формирует пору, открытую к одной из сторон мембраны.

Рис. 2. Облегченная диффузия. Описание в тексте

Связавшись с веществом, белок-переносчик изменяет свою конформацию и переходит в состояние 6 . При этом конформационном превращении переносчик теряет сродство с переносимым веществом, оно высвобождается из связи с переносчиком и оказывается перемещенным в пору на другой стороне мембраны. После этого белок снова совершает возврат в состояние а. Такой перенос вещества белком-транспортером через мембрану называют унипортом.

Посредством облегченной диффузии могут транспортироваться такие низкомолекулярные вещества, как глюкоза, из интерстициальных пространств в клетки, из крови в мозг, реабсорбироваться некоторые аминокислоты и глюкоза из первичной мочи в кровь в почечных канальцах, всасываться из кишечника аминокислоты, моносахариды. Скорость транспорта веществ путем облегченной диффузии может достигать до 10 8 частиц за секунду через канал.

В отличие от скорости переноса вещества простой диффузией, которая прямо пропорциональна разности его концентраций по обе стороны мембраны, скорость переноса вещества при облегченной диффузии возрастает пропорционально увеличению разности концентраций вещества до некоторого максимального значения, выше которого она не увеличивается, несмотря на повышение разности концентраций вещества по обе стороны мембраны. Достижение максимальной скорости (насыщение) переноса в процессе облегченной диффузии объясняется тем, что при максимальной скорости в перенос оказываются вовлеченными все молекулы белков-переносчиков.

Обменная диффузия — при этом виде транспорта веществ может происходить обмен молекулами одного и того же вещества, находящимися по разные стороны мембраны. Концентрация вещества с каждой стороны мембраны остается при этом неизменной.

Разновидностью обменной диффузии является обмен молекулы одного вещества на одну или более молекул другого вещества. Например, в гладкомышечных клетках сосудов и бронхов, в сократительных миоцитах сердца одним из путей удаления ионов Са 2+ из клеток является обмен их на внеклеточные ионы Na+. На три иона входящего Na+ из клетки удаляется один ион Са 2+ . Создается взаимообусловленное (сопряженное) движение Na+ и Са 2+ через мембрану в противоположных направлениях (этот вид транспорта называют антипортом). Таким образом клетка освобождается от избыточного количества ионов Са 2+ , что является необходимым условием для расслабления гладких миоцитов или кардиомиоцитов.

Активный транспорт веществ

Активный транспорт веществ через — это перенос веществ против их градиентов, осуществляющийся с затратой метаболической энергии. Этот вид транспорта отличается от пассивного тем, что перенос осуществляется не по градиенту, а против градиентов концентрации вещества и на него используется энергия АТФ или другие виды энергии, на создание которых АТФ затрачивалась ранее. Если непосредственным источником этой энергии является АТФ, то такой перенос называют первично-активным. Если на перенос используется энергия (концентрационных, химических, электрохимических градиентов), ранее запасенная за счет работы ионных насосов, затративших АТФ, то такой транспорт называют вторично-активным, а также сопряженным. Примером сопряженного, вторично-активного транспорта являются абсорбция глюкозы в кишечнике и ее реабсорбция в почках с участием ионов Na и переносчиков GLUT1.

Благодаря активному транспорту могут преодолеваться силы не только концентрационного, но и электрического, электрохимического и других градиентов вещества. В качестве примера работы первично-активного транспорта можно рассмотреть работу Na+ -, К+ -насоса.

Активный перенос ионов Na + и К+ обеспечивается белком- ферментом — Na+ -, К+ -АТФ-азой, способной расщеплять АТФ.

Белок Na К -АТФ-аза содержится в цитоплазматической мембране практически всех клеток организма, составляя 10% и более от общего содержания белка в клетке. На работу этого насоса тратится более 30% всей метаболической энергии клетки. Na + -, К+ -АТФ-аза может находиться в двух конформационных состояниях — S1 и S2. В состоянии S1 белок обладает сродством с ионом Na и 3 иона Na присоединяются к трем высокоаффинным местам его связывания, повернутым внутрь клетки. Присоединение иона Na" стимулирует АТФ-азную активность, и в результате гидролиза АТФ Na+ -, К+ -АТФ-аза фосфорилируется за счет переноса на нее фосфатной группы и осуществляет конформационный переход из состояния S1 в состояние S2 (рис. 3).

В результате изменения пространственной структуры белка места связывания ионов Na поворачиваются на внешнюю поверхность мембраны. Аффинность мест связывания к ионам Na+ резко уменьшается, и он, высвободившись из связи с белком, оказывается перенесенным во внеклеточное пространство. В конформационном состоянии S2 повышается аффинность центров Na+ -, К-АТФ-азы к ионам К и они присоединяют два иона К из внеклеточной среды. Присоединение ионов К вызывает дефосфорилирование белка и его обратный конформационный переход из состояния S2 в состояние S1. Вместе с поворотом центров связывания на внутреннюю поверхность мембраны два иона К высвобождаются из связи с переносчиком и оказываются перенесенными внутрь. Подобные циклы переноса повторяются со скоростью, достаточной для поддержания в покоящейся клетке неодинакового распределения ионов Na+ и К+ в клетке и межклеточной среде и, как следствие, поддержания относительно постоянной разности потенциалов на мембране возбудимых клеток.

Рис. 3. Схематическое представление работы Na+ -, К + -насоса

Вещество строфантин (оуабаин), выделяемое из растения наперстянка, обладает специфической способностью блокировать работу Na + -, К+ — насоса. После его введения в организм в результате блокады выкачивания иона Na+ из клетки наблюдаются снижение эффективности работы Na+ -, Са 2 -обменного механизма и накопление в сократительных кардиомиоцитах ионов Са 2+ . Это ведет к усилению сокращения миокарда. Препарат применяется для лечения недостаточности насосной функции сердца.

Кроме Na"-, К + -АТФ-азы имеются еще несколько типов транспортных АТФ-аз, или ионных насосов. Среди них насос, осуществляющий транспорт прогонов водорода (митохондрии клеток, эпителий почечных канальцев, париетальные клетки желудка); кальциевые насосы (пейсмекерные и сократительные клетки сердца, мышечные клетки поперечно-полосатой и гладкой мускулатуры). Например, в клетках скелетных мышц и миокарда белок Са 2+ -АТФ-аза встроен в мембраны саркоплазматического ретикулума и благодаря его работе обеспечивается поддержание высокой концентрации ионов Са 2+ в его внутриклеточных хранилищах (цистерны, продольные трубочки саркоплазматического ретикулума).

В некоторых клетках силы трансмембранной разности электрических потенциалов и градиента концентрации натрия, возникающие в результате работы Na+-, Са 2+ -насоса, используются для осуществления вторично-активных видов переноса веществ через клеточную мембрану.

Вторично-активный транспорт характеризуется тем, что перенос вещества через мембрану осуществляется за счет градиента концентрации другого вещества, который был создан механизмом активного транспорта с затратой энергии АТФ. Различают две разновидности вторично активного транспорта: симпорт и антипорт.

Симпортом называют перенос вещества, который сопряжен с одновременным переносом другого вещества в том же направлении. Симпортным механизмом переносятся йод из внеклеточного пространства в тиреоциты щитовидной железы, глюкоза и аминокислоты при их всасывании из тонкой кишки в энтероциты.

Антипортом называют перенос вещества, который сопряжен с одновременным переносом другого вещества, но в обратном направлении. Примером антипортного механизма переноса является работа упоминавшегося ранее Na + -, Са 2+ — обменника в кардиомиоцитах, К+ -, Н+ -обменного механизма в эпителии почечных канальцев.

Из приведенных примеров видно, что вторично-активный транспорт осуществляется за счет использования сил градиента ионов Na+ или ионов К+. Ион Na+ или ион К перемещается через мембрану в сторону его меньшей концентрации и тянет за собой другое вещество. При этом обычно используется встроенный в мембрану специфический белок-переносчик. Например, транспорт аминокислот и глюкозы при их всасывании из тонкого кишечника в кровь происходит благодаря тому, что белок-переносчик мембраны эпителия кишечной стенки связывается с аминокислотой (глюкозой) и ионом Na+ и только тогда изменяет свое положение в мембране таким образом, что переносит аминокислоту (глюкозу) и ион Na+ в цитоплазму. Для осуществления такого транспорта необходимо, чтобы снаружи клетки концентрация иона Na+ была гораздо больше, чем внутри, что обеспечивается постоянной работой Na+, К+ — АТФ-азы и затратой метаболической энергии.

text_fields

text_fields

arrow_upward

У животных с замкнутой сосудистой системой внеклеточная жид­кость условно разделяется на два компонента:

1) Интерстициальная жидкость
2) Циркулирующая плазма крови.

Интерстициальная жид­кость представляет собой часть внеклеточной жидкости, которая рас­положена вне сосудистой системы и омывает клетки.

Около 1/3 общей воды тела составляет внеклеточная жидкость, остальные 2/3 - жидкость внутриклеточная.

Концентрации электролитов и коллоидных веществ существенно отличаются в плазме, интерстициальной и внутриклеточной жидкос­тях. Наиболее выраженные различия состоят в относительно низком содержании белков-анионов в интерстициальной жидкости, в срав­нении с внутриклеточной жидкостью и плазмой крови, и более высоких концентрациях натрия и хлора в интерстициальной, а ка­лия во внутриклеточной жидкости.

Неодинаковый состав различных жидких сред тела в значительной степени обусловлен природой разделяющих их барьеров. Клеточные мембраны отделяют внутриклеточную от внеклеточной жидкости, стенки капилляров - интерстициальную жидкость от плазмы. Пере­нос веществ через эти барьеры может происходить пассивно за счет диффузии, фильтрации и осмоса, а также посредством активного транспорта.

Пассивный транспорт

text_fields

text_fields

arrow_upward

Рис. 1.12 Виды пассивного и активного транспорта веществ через мембрану.

Схематически основные виды транспорта веществ через мембрану клеток представлены на рис.1.12

Рис.1.12 Виды пассивного и активного транспорта веществ через мембрану.

3 — облегченная диффузия,

Пассивный перенос веществ через клеточные мембраны не тре­бует затраты энергии метаболизма.

Виды пассивного транспорта

text_fields

text_fields

arrow_upward

Виды пассивного транспорта веществ:

  • Простая диффузия
  • Осмос
  • Диффузия ионов
  • Облегченная диффузия

Простая диффузия

text_fields

text_fields

arrow_upward

Диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и заполняют весь доступный объем.

Молекулы и ионы, растворенные в жидкости, находятся в хаоти­ческом движении, сталкиваясь друг с другом, молекулами раствори­теля и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данного вещества.

Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированно­го раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде (гидрофильные) вещества, так и гидрофобные, плохо или совсем в ней нерастворимые.

Гидрофобные, хорошо растворимые в жирах вещества, диффунди­руют благодаря растворению в липидах мембраны.

Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, т.н. кинки, а также через поры, постоянно существующие гидрофильные участки мембраны.

В случае, когда клеточная мембрана непроницаема или плохо про­ницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой кон­центрации вещества в клетке, чем в окружающей среде, клетка сжи­мается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки.

Осмос

text_fields

text_fields

arrow_upward

Осмос - движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества.

Осмотическим давлением называется то наименьшее давление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в облас­ти, где концентрация растворенного вещества выше, химический по­тенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по гради­енту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состо­янии полного равновесия с окружающей средой. Непрерывное движение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое давление ее содержимого. Если клетка секретирует какое-либо вещество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация ве­ществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набу­хают.

Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содер­жимого или поступающую в них воду. В большинстве случаев клет­ки используют первую возможность - откачку веществ, чаше ионов, используя для этого натриевый насос (см.ниже).

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

1) количеством содержащихся в них и неспособ­ных к проникновению через мембрану веществ;
2) концентрацией в интерстиций соединений, способных проходить через мембрану;
3) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.

Явления фильтрации лежат в основе многих физиологических про­цессов, таких, например, как образование первичной мочи в нефроне, обмен воды между кровью и тканевой жидкостью в капиллярах.

Диффузия ионов

text_fields

text_fields

arrow_upward

Диффузия ионов происходит, в основном, через специализированные белковые структуры мембраны - ионные ка­ налы, когда они находятся в открытом состоянии. В зависимости от вида ткани клетки могут иметь различный набор ионных каналов.

Различают натриевые, калиевые, кальциевые, натрий-кальциевые и хлорные каналы . Перенос ионов по каналам имеет ряд особеннос­тей, отличающих его от простой диффузии. В наибольшей степени это касается кальциевых каналов.

Ионные каналы могут находиться в открытом, закрытом и инактивированном состояниях. Переход канала из одного состояния в другое управляется или изменением электрической разности потен­циалов на мембране, или взаимодействием физиологически активных веществ с рецепторами.

Соответственно, ионные каналы подразде­ляют на потенциал-зависимые и рецептор-управляемые. Избирательная проницаемость ионного канала для конкретного иона опре­деляется наличием специальных селективных фильтров в его устье.

Облегченная диффузия

text_fields

text_fields

arrow_upward

Через биологические мембраны кроме воды и ионов путем простой диффузии проникают многие вещества (от этанола до сложных лекарственных препаратов). В то же время даже сранительно небольшие полярные молекулы, например, гликоли, мо­носахариды и аминокислоты практически не проникают через мем­брану большинства клеток за счет простой диффузии. Их перенос осуществляется путем облегченной диффузии.

Облегченной называется диффузия вещества по градиенту его концентрации, которая осущест­вляется при участии особых белковых молекул-переносчиков.

Транспорт Na + , K + , Сl — , Li + , Ca 2+ , НСО 3 — и Н + могут также осуществлять специфические переносчики . Характерными чертами этого вида мембранного транспорта являются высокая по сравнению с простой диффузией скорость переноса вещества, зависимость от строения его молекул, насыщаемость, конкуренция и чувствитель­ность к специфическим ингибиторам - соединениям, угнетающим облегченную диффузию.

Все перечисленные черты облегченной диффузии являются резуль­татом специфичности белков-переносчиков и ограниченным их ко­личеством в мембране. При достижении определенной концентрации переносимого вещества, когда все переносчики заняты транспорти­руемыми молекулами или ионами, дальнейшее ее увеличение не при­ведет к возрастанию числа переносимых частиц - явление насыщения . Вещества, сходные по строению молекул и транспортируемые одним и тем же переносчиком, будут конкурировать за переносчик - явление конкуренции .

Различают несколько видов транспорта веществ посредством облегченной диффузии (рис. 1.13):

Рис. 1.13 Классификация способов переноса через мембрану.

Унипорт , когда молекулы или ионы переносятся через мебрану независимо от наличия или переноса других соединений (тран­спорт глюкозы, амино­кислот через базальную мембрану эпителиоцитов);

Симпорт , при котором их перенос осуществляется одновременно и однонаправленно с другими со­единениями (натрий- за­висимый транспорт Сахаров и аминокислот Na + K + , 2Cl — и котран-спорт);

Антипорт - (транспорт вещества обусловлен одновремен­ным и противоложно направленным транспортом другого соедине­ния или иона (Na + /Ca 2+ , Na + /H + Сl — /НСО 3 — - обмены).

Симпорт и антипорт - это виды котранспорта, при которых скорость пере­носа контролируется всеми участниками транспортного процесса.

Природа белков-переносчиков неизвестна. По принципу действия они делятся на два типа. Переносчики первого типа совершают челночные движения через мембрану, а второго - встраиваются в мембрану, образуя канал. Промоделировать их действие можно с помощью антибиотиков-ионофоров, переносчиком щелочных метал­лов. Так, один из них - (валиномицин) - действует как истинный переносчик, переправляющий калий через мембрану. Молекулы же грамицидина А, другого ионофора, встаиваются в мембрану друг за другом, формируя «канал» для ионов натрия.

Большинство клеток обладают системой облегченной диффузии. Однако перечень метаболитов, переносимых с помощью такого ме­ханизма, довольно ограничен. В основном, это сахара, аминокисло­ты и некоторые ионы. Соединения, являющиеся промежуточными продуктами обмена (фосфорилированные сахара, продукты метабо­лизма аминокислот, макроэрги), не транспортируются с помощью этой системы. Таким образом, облегченная диффузия служит для переноса тех молекул, которые клетка получает из окружающей среды. Исключением является транспорт органических молекул через эпителий, который будет рассмотрен отдельно.

Активный транспорт

text_fields

text_fields

arrow_upward

Активный транспорт осуществля­ется транспортными аденозинтрифосфатазами (АТФазами) и проис­ходит за счет энергии гидролиза АТФ.

На рис.1.12 представлены виды пассивного и активного транспорта веществ через мембрану.

1,2 — простая диффузия через бислой и ионный канал,
3 — облегченная диффузия,
4 — первично-активный транспорт,
5 — вторично-активный транспорт.

Виды активного транспорта

text_fields

text_fields

arrow_upward

Виды активного транспорта веществ:

Первично-активный транспорт,

Вторично-активный транспорт.

Первично-активный транспорт

text_fields

text_fields

arrow_upward

Транспорт веществ из среды с низкой кон­центрацией в среду с более высокой концентрацией не может быть объяснен движением по градиенту, т.е. диффузией. Этот процесс осуществляется за счет энергии гидролиза АТФ или энергии, обу­словленной градиентом концентрации каких-либо ионов, чаще все­го натрия. В случае, если источником энергии для активного транс­порта веществ является гидролиз АТФ, а не перемещение через мембрану каких-то других молекул или ионов, транспорт называ­ется первично активным .

Первично-активный перенос осуществляется транспортными АТФа-зами, которые получили название ионных насосов. В клетках животных наиболее распространена Na + ,K + - АТФаза (натриевый насос), пред­ставляющая собой интегральный белок плазматической мембраны и Са 2+ - АТФазы, содержащиеся в плазматической мембране сарко-(эндо)-плазматического ретикулума. Все три белка обладают общим свойством - способностью фосфорилироваться и образовывать про­межуточную фосфорилированную форму фермента. В фосфорилиро-ванном состоянии фермент может находиться в двух конформациях, которые принято обозначать Е 1 и Е 2 .

Конформация фермента - это способ пространственной ориентации (укладки) полипептидной цепи его молекулы. Две указанные конформации фермента характеризуются различным сродством к переносимым ионам, т.е. различной способ­ностью связывать транспортируемые ионы.

Na + /K + — АТФаза обеспечивает сопряженный активный транспорт Na + из клетки и К + в цитоплазму. В молекуле Na + /K + — АТФазы имеется особая область (участок), в которой происходит связывание ионов Na и К. При конформации фермента E 1 эта область обращена внутрь плазматического ретикулума. Для осуществления этой стадии пре­вращения Са 2+ -АТФазы необходимо присутствие в саркоплазмати-ческом ретикулуме ионов магния. В последующем цикл работы фермента повторяется.

Вторично-активный транспорт

text_fields

text_fields

arrow_upward

Вторичным активным транспортом называется перенос через мембрану вещества против гради­ента его концентрации за счет энергии градиента концентрации другого вещества, создаваемого в процессе активного транспорта. В клетках животных основным источником энергии для вторичного активного транспорта служит энергия градиента концентрации ионов натрия, который создается за счет работы Na + /K + — АТФазы. Напри­мер, мембрана клеток слизистой оболочки тонкого кишечника со­держит белок, осуществляющий перенос (симпорт) глюкозы и Na + в эпителиоциты. Транспорт глюкозы осуществляется лишь в том слу­чае, если Na + , одновременно с глюкозой связываясь с указанным белком, переносится по электрохимическому градиенту. Электрохи­мический градиент для Na + поддерживается активным транспортом этих катионов из клетки.

В головном мозге работа Na + -насоса сопряжена с обратным по­глощением (реабсорбцией) медиаторов - физиологически активных веществ, которые выделяются из нервных окончаний при действии возбуждающих факторов.

В кардиомиоцитах и гладкомышечных клетках с функционирова­нием Na + , K + -АТФазы связан транспорт Са 2+ через плазматическую мембрану, благодаря присутствию в мембране клеток белка, осу­ществляющего противотранспорт (антипорт) Na + и Са 2+ . Ионы каль­ция переносятся чере мембрану клеток в обмен на ионы натрия и за счет энергии концентрационного градиента ионов натрия.

В клетках обнаружен белок, обменивающий внеклеточные ионы натрия на внутриклеточные протоны - Na + /H + - обменник. Этот переносчик играет важную роль в поддержании постоянства внут­риклеточного рН. Скорость, с которой осуществляется Na + /Ca 2+ и Na + /H + - обмен, пропорциональна электрохимическому градиенту Na + через мембрану. При уменьшении внеклеточной концентрации Na + ингибировании Na + , K + -АТФазы сердечными гликозидами или в бескалиевой среде внутриклеточная концентрация кальция и про­тонов увеличена. Это увеличение внутриклеточной концентрации Са 2+ при ингибировании Na + , K + -АТФазы лежит в основе применения в клинической практике сердечных гликозидов для усиления сердеч­ных сокращений.

Конспект лекции № 3.

Тема. Субклеточный и клеточный уровни организации живого.

Строение биологических мембран.

Основа биологической мембраны всех живых организмов- это двойная фосфолипидная структура. Фосфолипиды клеточных мембран представляют собой триглицериды, у которых одна из жирных кислот замещена на фосфорную кислоту. Гидрофильные "головки" и гидрофобные "хвостики" фосфолипидных молекул ориентированы так, что возникает два ряда молекул, головки которых прикрывают от воды "хвостики".

В такую фосфолипидную структуру интегрированы разные по величине и форме белки.

Индивидуальные свойства и особенности мембраны определяются преимущественно белками. Разный белковый состав определяет разницу строения и функций органоидов любых видов животных. Влияние состава липидов мембран на их свойства значительно ниже.

Транспорт веществ через биологические мембраны.


Транспорт веществ через мембрану делят на пассивный (без затрат энергии по градиенту концентрации) и активный (с затратами энергии).

Пассивный транспорт: диффузия, облегченная диффузия, осмос.

Диффузия - это движение растворенных в среде частиц из зоны с высокой концентрацией в зону с низкой концентрацией (растворение сахара в воде).

Облегченная диффузия - это диффузия с помощью белка-канала (поступление глюкозы в эритроциты).


Осмос - это движение частиц растворителя из зоны с меньшей концентрацией растворенного вещества в зону с высокой концентрацией (эритроцит в дистиллированной воде набухает и лопается).

Активный транспорт делят на транспорт, связанный с изменением формы мембраны и транспорт белками-ферментами-насосами.

В свою очередь, транспорт, связанный с изменением формы мембран, делят на три вида.

Фагоцитоз - это захват плотного субстрата (лейкоцит-макрофаг захватывает бактерию).

Пиноцитоз - это захват жидкостей (питание клеток зародыша на первых стадиях внутриутробного развития).

Транспорт белками-ферментами-насосами - это передвижение вещества через мембрану с помощью белков-переносчиков, интегрированных в мембрану (транспорт ионов натрия и калия "из" и "в" клетку, соответственно).

По направлению транспорт делят на экзоцитоз (из клетки) и эндоцитоз (в клетку).

Классификация составных частей клетки проводится по различным критериям.

По наличию биологических мембран органоиды делят на двумембранные, одномембранные и немембранные.

По функциям органоиды можно разделить на неспецифические (универсальные) и специфические (специализированные).

По значению при повреждении на жизненноважные и восстановимые.

По принадлежности к разным группам живых существ на растительные и животные.

Мембранные (одно- и двумембранные) органоиды имеют сходное с точки зрения химии строение.

Двумембранные органоиды.

Ядро. Если клетки организма имеют ядро, то их называют эукариотами. Ядерная оболочка имеет две близкорасположенные мембраны. Между ними находится перинуклеарное пространство. В ядерной оболочке есть отверстия - поры. Ядрышки - это части ядра ответственные за синтез РНК. В ядрах некоторых клеток женщин в норме выделяется 1 тельце Барра - неактивная Х-хромосома. При делении ядра становятся заметны все хромосомы. Вне деления хромосомы, как правило, не видны. Ядерный сок - кариоплазма. Ядро обеспечивает хранение и функционирование генетической информации.

Митохондрии. Внутренняя мембрана имеет кристы, которые увеличивают площадь внутренней поверхности для ферментов аэробного окисления. Митохондрии имеют свою ДНК, РНК, рибосомы. Главная функция - завершение окисления и фосфорилирование АДФ

АДФ+Ф=АТФ.

Пластиды (хлоропласты, хромопласты, лейкопласты). Пластиды имеют собственные нуклеиновые кислоты и рибосомы. В строме хлоропластов имеются дискообразные мембраны, собранные в стопки, где находится хлорофилл, ответственный за фотосинтез.

Хромопласты имеют пигменты, которые определяют желтую, красную, оранжевую окраску листьев, цветков и плодов.

Лейкопласты запасают питательные вещества.

Одномембранные органоиды.

Наружная цитоплазматическая мембрана отделяет клетку от внешней среды. Мембрана имеет белки, которые выполняют разные функции. Различают белки-рецепторы, белки-ферменты, белки-насосы, белки-каналы. Наружная мембрана обладает избирательной проницаемостью, обеспечивая транспорт веществ через мембрану.

У некоторых мембран выделяют элементы надмембранного комплекса - клеточная стенка у растений, гликокаликс и микроворсинки клеток эпителия кишечника у людей.

Имеется аппарат контакта с соседними клетками (например, десмосомы) и субмембранный комплекс (фибриллярные структуры), обеспечивающий устойчивость и форму мембраны.

Эндоплазматическая сеть (ЭПС) - это система мембран, образующих цистерны и каналы для взаимосвязей внутри клетки.

Различают гранулярную (шероховатую) и гладкую ЭПС.

На гранулярной ЭПС имеются рибосомы, где происходит биосинтез белков.

На гладкой ЭПС синтезируются липиды и углеводы, окисляется глюкоза (бескислородный этап), обезвреживаются эндогенные и экзогенные (ксенобиотики-чужеродные, в том числе, лекарственные) вещества. Для обезвреживания на гладкой ЭПС имеются белки-ферменты, катализирующие 4 главных типа химических реакций: окисление, восстановление, гидролиз, синтез (метилирование, ацетилирование, сульфатирование, глюкуронирование). В содружестве с аппаратом Гольджи ЭПС принимает участие в формировании лизосом, вакуолей и других одномембранных органоидов.

Аппарат Гольджи (пластинчатый комплекс) - это компактная система из плоских мембранных цистерн, дисков, пузырьков, которая тесно связана с ЭПС. Пластинчатый комплекс принимает участие в формировании оболочек (например, для лизосом и секреторных гранул) отграничивающих гидролитические ферменты и другие вещества от содержимого клетки.

Лизосомы - пузырьки с гидролитическими ферментами. Лизосомы активно участвуют во внутриклеточном пищеварении, в фагоцитозе. Они переваривают захваченные клеткой объекты, сливаясь с пиноцитарными и фагоцитарными пузырьками. Могут переваривать собственные изношенные органоиды. Лизосомы фагов обеспечивают иммунную защиту. Лизосомы опасны тем, что при разрушении их оболочки может произойти аутолизис (самопереваривание) клетки.

Пероксисомы - это мелкие одномембранные органоиды, содержащие фермент каталазу, который нейтрализует перекись водорода. Пероксисомы - это органоиды защиты мембран от свободнорадикального перекисного окисления.

Вакуоль - это одномембранные органоиды, характерные для растительных клеток. Их функции связаны с поддержанием тургора и (или) запасанием веществ.

Немембранные органоиды.

Рибосомы - это рибонуклеопротеиды, состоящие из большой и малой субъединиц р-РНК. Рибосомы являются местом сборки белка.

Фибриллярные (нитеобразные) структуры - это микротрубочки, промежуточные филаменты и микрофиламенты.

Микротрубочки. По строению напоминают бусы, нить которых завита в плотную пружину-спираль. Каждая "бусинка" представляет собой белок-тубулин. Диаметр трубочки 24 нм. Микротрубочки - это часть системы каналов, обеспечивающих внутриклеточный транспорт веществ. Они укрепляют цитоскелета, принимают участие в формировании веретена деления, центриолей клеточного центра, базальных телец, ресничек и жгутиков.

Клеточный центр - участок цитоплазмы с двумя центриолями, образованными из 9 триплетов (по 3 микротрубочки). Таким образом, каждая центриоль состоит из 27 микротрубочек. Считается, что клеточный центр является базой для формирования нитей веретена деления клетки.

Базальные тельца - это основания ресничек и жгутиков. На поперечном разрезе реснички и жгутики имеют девять пар микротрубочек по окружности и одну пару в центре, всего 18+2=20 микротрубочек. Реснички и жгутики обеспечивают движение микроорганизмов и клеток (сперматозоиды) в среде их обитания.

Промежуточные филаменты имеют диаметр 8-10 нм. Они обеспечивают функции цитоскелета.

Микрофиламенты с диаметром 5-7 нм преимущественно состоят из белка актина. Во взаимодействии с миозином они отвечают не только за мышечные сокращения, но и за сократительную активность не мышечных клеток. Так, изменения формы мембраны при фагоцитозе и активность микроворсинок объясняют работой микрофиламентов.

Технологическая карта урока

Тема: Биологическая мембрана. Транспорт веществ через биологические мембраны.

Класс: 10 класс

Тип урока: урок усвоения новых знаний

Цель: формирование представлений о структуре клеточной мембраны и ее транспортных системах

Задачи:

Образовательные:

    познакомить с краткой историей открытия биомембраны;

    углубить знания о строении плазматической мембраны;

    рассмотреть основные типы транспортных систем клеточной мембаны;

    раскрыть значение этим систем в жизни человека.

Развивающие:

    способствовать развитию речи учащихся путем постановки вопроса, требующих развернутого и связного ответа.

    создать условия для развития произвольного внимания при объяснении нового материала.

    способствовать развитию наглядно-образного мышления при демонстрации презентации, наглядных материалов.

Воспитательные:

    создать условия для воспитания у учащихся правильной научной картины мира.

    умения планировать учебное сотрудничество со сверстниками и учителем.

Основные термины и понятия: клеточная мембрана, пассивный транспорт, диффузия, осмос, активный транспорт, натрий-калиевый насос, белок-пермиаза, везикулярный транспорт, везикула, эндоцитоз, фагоцитоз, пиноцитоз, экзоцитоз.

Методы обучения: словесные (беседа, объяснение), наглядные, частично-поисковые, проблемные, работа с текстом презентации.

Формы обучения: фронтальная

Оборудование: ИКТ презентация «Биологические мембраны»

План урока:

    Организационный этап.

    Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

    Актуализация знаний.

    Изучение нового материала

    Первичная проверка понимания

    Информация о домашнем задании, инструктаж по его выполнению

    Рефлексия

Ход урока:

приветствие;

фиксация отсутствующих

Приветствует обучающихся, проверяет их готовность к уроку.

Учащиеся встают, приветствуя учителя, готовятся к уроку

Личностные: самоорганизация

Коммуникативные : планирование учебного сотрудничества с учителем и одноклассниками.

2. Постановка цели и задач урока. Мотивация учебной деятельности учащихся

8 мин.

создать условия для возникновения внутренней потребности включения в деятельность

Что изучает наука «цитология»?

Что такое клетка? Как зовут ученого, в результате открытий которого было введено понятие “клетка”?

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной

Может кто то знает, что означает мембрана?

Какие у вас ассоциации с этим словом?

Само слово «мембрана» в переводе с латыни означает «кожица, пленка». Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций.

Сегодня мы с вами поговорим об устройстве клеточной мембраны и о том как проходят вещества внутрь клетки и наружу из клетки.

    Объяснение для чего необходимы знания строения и свойства клеточной мембраны и транспортных механизмов.

    Рассмотрение истории исследования клеточной мембраны.

Ребята, может быть кто то из вас знает какие были модели и какая модель сейчас является общепринятой?

В 1925 году И. Гортер и А. Грендель показали, что клеточная мембрана представляет собой двойной слой (бислой) из молекул липидов.

В 1935 году Дж. Даниэлли и Х. Доусон показали, что в клеточной мембране, помимо липидов, содержатся белки. Так возникла модель «сэндвича», в которой плазматическая мембрана представлялась в виде двух слоев белков, между которыми располагался липидный бислой.

Почему модель мембраны, созданную учеными Давсоном и Даниэли, назвали «модель сэндвича»? (Для справки: сэндвич – закрытый бутерброд).

1972 году С.Д. Сингером и Г.Л. Николсоном была предложена жидкостно-мозаичная модель мембраны

Чем модель клеточной мембраны, созданная учеными Сингером и Николсоном, отличается от модели, созданной Давсоном и Даниэли?

Почему проводится аналогия второй модели с бушующим морем, в котором плавают айсберги? Какое органическое вещество символизирует айсберги, а какое – бушующее море? (где мембранные белки «плавают» в жидком липидном бислое, как айсберги в открытом море. При этом предполагалось, что белки никак не упорядочены и могут свободно перемещаться в мембране).

-Ребята, а попробуйте дать определение клеточной мембране.

Клеточной мембраны её еще называют цитоплазматическая мембрана (плазмалемма) или биомембрана - которая представляет основную, универсальную для всех клеток часть поверхностного аппарата. Ее толщина составляет около 5-10 нм. (нанометров).

Давайте посмотрим на современную модель и ответим, что является основным компонентом?

Вспомните функции белков и свойства липидов.

Строение фосфолипида.

Фосфолипид состоит из полярной гидрофильной головкой и неполярными гидрофобными хвостами, представленные цепями жирных кислот. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты - внутрь мембраны

С липидным бислоем связаны молекулы белков.

Типы белков клеточной мембраны.

которые могут пронизывать его насквозь их называют интегральные, или трансмембранные, белки, погружаться в него частично - это полуинтегральные белки или примыкать с наружной или внутренней стороны - периферические белки.

Углеводный компонент

В состав мембран может входить углеводный компонент (10%), представленный олигосахаридными или полисахаридными цепочками, связанными с молекулами белков (гликопротеиды) или липидов (гликолипиды). Углеводы располагаются обычно на наружной поверхности мембраны и выполняют рецепторные функции.

Появление мембраны в эволюции - крупнейший ароморфоз. Благодаря этому содержимое клетки стало отграничено от внешней среды.

ПОМНИМ! У животной клетки под оболочкой понимается мембрана + гликокаликс.

У растительных клеток помимо мембраны снаружи имеется еще толстая целлюлозная оболочка - клеточная стенка - выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.

Называют ассоциации на заданную тему

Учащиеся записывают тему урока

Учащиеся делают необходимые записи в тетради (отмечают современную модель Николсона и Сингера)

Учащиеся высказывают свои предположения

Учащиеся анализируют два типа модели и делают выводы

Записывают определение

Учащиеся анализируют рисунок, называют основные компоненты

Зарисовывают схематично клеточную мембрану.

Учащиеся высказывают свое предположение

Учащиеся зарисовывают строение фосфолипида

Отмечают типы белков

Отмечают углеводные хвостики

Личностные: самоорганизация

Регулятивные: способность регулировать свои действия;

Познавательные : структурирование знаний, самостоятельное создание алгоритмов деятельности при решении поставленной проблем

Коммуникативные : планирование учебного сотрудничества с учителем и одноклассниками;

3. Изучение нового материла

20-25 мин.

Организовать осмысленное восприятие знаний о селекции как науки. Создать условия для развития умения устанавливать причинно-следственные связи между знания уже изученного и нового материала

Свойства мембран .

а) Подвижность .

Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (демонстрация перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке ). Гидрофобные хвосты могут свободно скользить друг относительно друга.

б) Способность самозамыкаться .

(демонстрация, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается) . Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани).

в) Избирательная проницаемость . Для того чтобы клетка нормально функционировала должен быть налажен транспорт и пограничный контроль. Плазматическая мембрана охраняют свою клетку как спец.объект. Так например, через двойной слой липидов свободно проходят, а сеть вещества которые проходят через специальные мембранные каналы или белки переносчики

Выделяют ряд важнейших функций, которые выполняют клеточные мембраны:

структурная (входят в состав большинства органоидов);

барьерная (Мембрана отделяет клеточное содержимое от внешней среды, предохраняет клетку от попадания в нее чужеродных веществ и обеспечивает поддержание постоянства внутриклеточной среды) ,

регуляция обменных процессов ;

рецепторная ( На наружной поверхности мембраны расположены рецепторные участки, где происходит связывание гормонов и других регуляторных молекул),

и транспортная.

Представьте, что веществам надо проникнуть в клетку. Для этого необходимо преодолеть плазматическую мембрану. Какие известные способы проникновения веществ вы можете вспомнить?

???????

Различают два основных виды переноса, пассивный и активный. Пассивный еще называют диффузия.

Как вы понимаете, что такое диффузия?

И так, если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т.е. по градиенту концентрации этого вещества) и осуществляется без затрат энергии такой транспорт называют пассивным или диффузным. Он в свою очередь делится на простую и облегченную диффузию, осмос.

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалемму могут проходить небольшие молекулы (например, Н 2 0, 0 2 , С0 2 , мочевина) и ионы. Как правило, это неполярные вещества. Простая диффузия происходит относительно медленно

Для ускорения диффузного транспорта существуют мембранные белки-переносчики.Они избирательно связываются с тем или иным ионом или молекулой (полярные молекулы и ионы) и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией . Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Вода поглощается клеткой преимущественно путем осмоса. Осмос - это диффузия воды через полупроницаемую мембрану, вызванная разностью концентраций. Осмос как одну из форм диффузии, при которой перемещаются только молекулы воды.

Транспорт, который осуществляется в случае , когда перенос против градиента концентрации -называется пассивным транспортом. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Для активного транспорта имеются специальные насосы, работающие с использованием энергии. Источником энергии часто является АТФ. Активный транспорт имеет решающее значение, поскольку обеспечивает избирательное концентрирование необходимых для жизнедеятельности клетки веществ.

Осуществляют транспорт веществ, специальные механизмы, это ионные насосы или АТФ-азы.

Существует три ионных насоса:

    Натрий-калиевые (Na / K – АТФаза)

    Кальциевые насосы (Са – АТФаза)

    Протонные насосы (H – АТФаза)

Все АТФ-насосы являются трансмембарнными белками - пермеаз. Эти белки могут проводить в одном направлении одно вещество (унипорт - натрий) или несколько веществ одновременно в одном направлении (симпорт – хлор, аминокислоты, сахароза), или же два вещества в противоположном направлении (антипорт – магний, натрий, марганец). Так, глюкоза может входить в клетки симпортно вместе с ионом Na +.

В зависимости от источника используемой энергии активный транспорт подразделяется на два типа: первично активный и вторично активный. Для первично активного транспорта энергия извлекается непосредственно при расщеплении АТФ или некоторых других высокоэнергетических фосфатных соединений. Одним из наиболее распространенных первично-активным транспорт является натрий-калиевый насос (видео).

Вторично активный транспорт обеспечивается вторичной энергией, накопленной в форме разности концентраций побочных веществ, молекул или ионов, по обе стороны клеточной мембраны, созданной первоначально первично активным транспортом . Например, мембрана клеток слизистой оболочки тонкого кишечника содержит белок, осуществляющий перенос (симпорт) глюкозы и Na+ в самые высокие клетки эпителия слизистой оболочки дыхательных путей .

Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является везикулярный транспорт.

Может кто-то занет как осушествляется такой тип переноса веществ? Что такое везикула? Как вы понимаете?

Везикула – дословно переводится как упакованный мешочек. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта - эндоцитоз и экзоцитоз.

Эндоцитоз - поглощение клеткой внешних частиц путем образования мембранных пузырьков. Выделяют такие разновидности эндоцитоза как: фагоцитоз и пиноцитоз.

Скажите, что это за процесс фагоцитоз? Где вы с ним встречались раньше?

Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

Пиноцитоз процесс захвата поверхностью клеточной мембраны соприкасающихся с нею молекул жидкости.

Экзоцитоз - процесс, обратный

эндоцитозу; из клеток выводятся

непереварившиеся остатки твёрдых

частиц и жидкий секрет.

Учащиеся записывают свойства клеточной мембраны

Записывают функции мембраны

Выдвигают свои мысли о возможности проникновения вещества в клетку

Учащиеся отмечают в тетради виды переноса веществ

Схематично зарисовывают простую диффузию и делают комментарии к рисунку

Схематично зарисовывают облегченную диффузию и делают комментарии к рисунку

Схематично зарисовывают осмос и делают комментарии к рисунку

Делают записи в тетради

Зарисовывают механизм работы натрий-калиевого насоса

Учащиеся высказывают свое предположение

Учащиеся записывают определения и схематично зарисовывают

Личностные: осмысление мотивов своих действий при выполнении заданий; формировать положительное отношение к учению, к познавательной деятельности, желание приобрести новые знания, умения осознавать свои ошибки и стремиться их преодолевать;

Познавательные: умения результативно мыслить и работать с информацией; умение работать с учебником и составлять таблицу; поиск и выделение необходимой информации; умение выявлять сущность, особенности объектов; умение на основе анализа объектов делать выводы;

4.Закрепление полученных знаний

5 мин.

Соотнесение поставленных задач с достигнутым результатом, фиксация нового знания, постановка дальнейших целей

Задание. Проанализируйте предлагаемые ситуации, проведите соответствующие аналогии и ответьте, о каких видах транспорта через мембрану идет речь.

А) Ты стоишь в толпе на автобусной остановке. Подходит пустой автобус. Люди начинают заполнять автобус. Это происходит достаточно легко. На остановке становится более свободно, а автобус равномерно заполнен. (пассивный)

Б) Ты стоишь на остановке один. Подходит переполненный автобус, а тебе нужно непременно уехать. Необходимо поработать локтями, чтобы зайти в автобус. Правда, тебе может помочь кто-то из сердобольных пассажиров .(активный)

Учащиеся анализируют предложенные ситуации делают вывод.

Личностные: самоорганизация

Регулятивные: умения организовывать свою деятельность; планирование своей работы при выполнении задания; контроль за выполнением работы; умение определять успешность своего задания;

Коммуникативные : умение строить речевое высказывание в соответствии с поставленными задачами; умение оформлять свои мысли в устной форме.

5.Домашнее задание

2 мин.

Инструкция по выполнению домашнего задания

    Оформить свои записи(определения, схематичные рисунки)

Учащиеся записывают задание в дневник. Задают вопросы по его выполнению.

Личностные: умение оценивать усваиваемое содержание;

Коммуникативные: умения общаться, взаимодействовать со сверстниками и педагогом; умение строить речевое высказывание в соответствии с поставленными задачами; умение оформлять свои мысли в устной форме.

6.Рефлексия

3 мин.

Осмысление процесса и результата деятельности

Учащиеся свое мнение.

Называют основные позиции нового материала и как они их усвоили (что получилось, что не получилось и почему)

Личностные: умение осуществлять анализ собственной деятельности; планирование дальнейших шагов для достижения цели.

Регулятивные: выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения; умения организовывать свою деятельность; планирование своей работы при выполнении задания

Коммуникативные: способность к критическому мышлению; умение представить себя; выслушивать и принимать во внимание взгляды других людей.

Барьерно-транспортная функция поверхностного аппарата клетки обе­спечивается избирательным переносом ионов, молекул и надмолекулярных структур в клетку и из нее. Транспорт через мембраны обеспечивает доставку питательных веществ и удаление ко­нечных продуктов обмена из клетки, секрецию, создание ионных градиентов и трансмембранного потенциала, под­держание в клетке необходимых значе­ний pH и др.

Механизмы транспорта веществ в клетку и из нее зависят от химиче­ской природы переносимого вещества и его концентрации по обе стороны клеточной мембраны, а также от разме­ров транспортируемых частиц. Малые молекулы и ионы транспортируются через мембрану путем пассивного или активного транспорта. Пере­нос макромолекул и крупных частиц осуществляется посредством транспор­та в «мембранной упаковке», то есть за счет образования окруженных мембра­ной пузырьков.

Пассивным транспортом называет­ся перенос веществ через мембрану по градиенту их концентрации без затра­ты энергии. Такой транспорт осущест­вляется посредством двух основных механизмов: простой диффузии и об­легченной диффузии.

Путем простой диффузии транспор­тируются малые полярные и неполяр­ные молекулы, жирные кислоты и дру­гие низкомолекулярные гидрофобные органические вещества. Транспорт мо­лекул воды через мембрану, осущест­вляемый путем пассивной диффузии, получил название осмоса. Примером простой диффузии служит транспорт газов через плазматическую мембрану эндотелиальных клеток кровеносных капилляров в окружающую их ткане­вую жидкость и обратно.

Гидрофильные молекулы и ионы, не способные самостоятельно прохо­дить через мембрану, транспортируются с помощью специфических мембранных транспортных белков. Такой механизм транспорта получил назва­ние облегченной диффузии.

Существуют два основных клас­са мембранных транспортных белков: белки-переносчики и белки-каналы. Молекулы переносимого вещества, связы­ваясь с белком-переносчиком, вызыва­ют его конформационные изменения, результатом чего служит перенос ука­занных молекул через мембрану. Об­легченная диффузия отличается высо­кой избирательностью по отношению к транспортируемым веществам.

Белки-каналы формируют запол­ненные водой поры, пронизывающие липидный бислой. Когда эти поры от­крыты, неорганические ионы или мо­лекулы транспортируемых веществ проходят сквозь них и таким образом переносятся через мембрану. Ионные каналы обеспечивают перенос при­мерно 10 6 ионов в секунду, что более чем в 100 раз превышает скорость транспорта, осуществляемого белками-переносчиками.

Большинство белков-каналов име­ет «ворота», которые открываются на короткое время, а затем закрываются. В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом называ­ется перенос веществ через мембрану против их градиентов концентрации. Он осуществляется с помощью белков-переносчиков и требует затрат энергии, основным источником которой служит АТФ.

Примером активного транспорта, использующего энергию гидролиза АТФ для перекачки ионов Na + и К + че­рез мембрану клетки, служит работа натриево-калиевого насоса , обеспечи­вающего создание мембранного по­тенциала на плазматической мембране клеток.

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ. В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

В зависимости от способности транспортных белков переносить один или несколько видов молекул и ионов пассивный и активный транспорт под­разделяются на унипорт и копорт, или сопряженный транспорт.

Унипорт - это транспорт, при кото­ром белок-переносчик функционирует только в отношении молекул или ионов одного вида. При копорте, или сопря­женном транспорте, белок-переносчик способен транспортировать одновре­менно два или более видов молекул или ионов. Такие белки-переносчики получили название копортеров , или сопряженных переносчиков. Различают два вида копорта: симпорт и антипорт. В случае симпорта молекулы или ионы транспортируются в одном направле­нии, а при антипорте - в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na + из клеток, а ионы К + внутрь клеток против их электрохимических градиентов. Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na + всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа + -канал, что сопровожда­ется переносом ионов Na + из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na + , в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na + : из первичной мочи внутрь клетки. В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na + , создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na + , позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Благодаря избирательному транс­порту заряженных ионов плазмалемма почти всех клеток несет на своей наруж­ной стороне положительный, а на вну­тренней цитоплазматической стороне - отрицательный заряды. В результате этого между обеими сторонами мембра­ны создается разность потенциалов.

Формирование трансмембранного потенциала достигается в основном за счет работы встроенных в плазмалемму транспортных систем: натриево­калиевого насоса и белков-каналов для ионов К + .

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na + , а внутри - избыток ионов К + . Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К + выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К + - каналами содержит многочисленные Nа + -каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов. Открытие Nа + -каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

Транспортные белки, которые ге­нерируют разность потенциалов на мембране, называются электрогенными насосами. Натриево-калиевый насос служит главной электрогенной помпой клеток.

Транспорт в мембранной упаковке характеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной. В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом называется процесс поглощения клеткой макромолекул и более крупных частиц (вирусов, бак­терий, фрагментов клеток). Эндоцитоз осуществляется путем фагоцитоза и пиноцитоза.

Фагоцитоз - процесс активного за­хвата и поглощения клеткой твердых микрочастиц, размер которых состав­ляет более 1 мкм (бактерий, фрагмен­тов клеток и др.). В ходе фагоцитоза клетка с помощью специальных ре­цепторов распознает специфические молекулярные группировки фагоци­тируемой частицы.

Затем в месте кон­такта частицы с мембраной клетки образуются выросты плазмалеммы - псевдоподии, которые обволакивают микрочастицу со всех сторон. В резуль­тате слияния псевдоподий такая части­ца оказывается заключенной внутри пузырька, окруженного мембраной, который называется фагосомой. Обра­зование фагосом - энергозависимый процесс и протекает с участием актомиозиновой системы. Фагосома, погру­жаясь в цитоплазму, может сливаться с поздней эндосомой или лизосомой, в результате чего поглощенная клеткой органическая микрочастица, например бактериальная клетка, переваривает­ся. У человека к фагоци­тозу способны только немногие клетки: например, макрофаги соединительной ткани и лейкоциты крови. Эти клетки поглощают бактерии, а также разнооб­разные твердые частицы, попавшие в организм, и тем самым защищают его от болезнетворных микроорганизмов и посторонних частиц.

Пиноцитоз - поглощение клеткой жидкости в виде истинных и коллоид­ных растворов и суспензий. Этот про­цесс в общих чертах сходен с фагоцито­зом: капля жидкости погружается в об­разовавшееся углубление клеточной мембраны, окружается ею и оказывает­ся заключенной в пузырек диаметром 0,07-0,02 мкм, погруженный в гиало­плазму клетки.

Механизм пиноцитоза весьма сло­жен. Этот процесс осуществляется в специализированных областях по­верхностного аппарата клетки, назы­ваемых окаймленными ямками, ко­торые занимают около 2% клеточной поверхности. Окаймленные ямки пред­ставляют собой небольшие впячивания плазмалеммы, рядом с которыми в пе­риферической гиалоплазме находится большое количество белка клатрина. В области окаймленных ямок на по­верхности клеток располагаются также многочисленные рецепторы, способные специфически распознавать и связы­вать транспортируемые молекулы. При связывании рецепторами указанных молекул происходит полимеризация клатрина, и плазмалемма впячивается. В результате образуется окаймленный пузырек, несущий в себе транспортируе­мые молекулы. Свое название такие пу­зырьки получили благодаря тому, что клатрин на их поверхности под элек­тронным микроскопом выглядит как неровная каемка. После отделения от плазмалеммы окаймленные пузырьки теряют клатрин и приобретают способ­ность сливаться с другими пузырьками. Процессы полимеризации и деполи­меризации клатрина требуют затрат энергии и блокируются при недостатке АТФ.

Пиноцитоз, благодаря высокой кон­центрации рецепторов в окаймленных ямках, обеспечивает избирательность и эффективность транспорта специфи­ческих молекул. Например, концен­трация молекул транспортируемых ве­ществ в окаймленных ямках в 1000 раз превышает концентрацию их в окру­жающей среде. Пиноцитоз - основной способ транспорта в клетку белков, ли­пидов и гликопротеинов. Посредством пиноцитоза клетка поглощает за сутки количество жидкости, равное своему объему.

Экзоцитоз - процесс выведения веществ из клетки. Вещества, подлежа­щие выведению из клетки, сначала за­ключаются в транспортные пузырьки, наружная поверхность которых, как правило, покрыта белком клатрином, затем такие пузырьки направляются к клеточной мембране. Здесь мембрана пузырьков сливается с плазмалеммой, а содержимое их изливается за пределы клетки либо, сохраняя связь с плазма­леммой, включается в гликокаликс.

Существуют два типа экзоцитоза: кон­ститутивный (основной) и регулируемый.

Конститутивный экзоцитоз непре­рывно протекает во всех клетках орга­низма. Он служит основным механиз­мом выведения из клетки продуктов метаболизма и постоянного восстанов­ления клеточной мембраны.

Регулируемый экзоцитоз осущест­вляется лишь в специальных клетках, выполняющих секреторную функцию. Выделяемый секрет накапливается в секреторных пузырьках, а экзоцитоз происходит только после получения клеткой соответствующего химическо­го или электрического сигнала. Напри­мер, β-клетки островков Лангерганса пожелудочной железы выделяют свой секрет в кровь лишь при повышении в крови концентрации глюкозы.

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой. При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз , или рекреция , - это транспорт, при котором происходит пе­ренос отдельных молекул через клетку. Указанный вид транспорта достигается за счет сочетания эндо- и экзоцитоза. Примером трансцитоза служит транс­порт веществ через клетки сосудистых стенок капилляров человека, который может осуществляться как в одном, так и в другом направлениях.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «unistomlg.ru» — Портал готовых домашних заданий